Ultracompact binary pulsars as continuous dual-line gravitational-wave Sources

Wen-Cong Chen (陈文聪) Qingdao University of Technology (青岛理工大学)

Jinan, FPS10, Jul 15

Frequency / Hz

Detectability of GW candidate sources

Ultra-compact X-ray binaries (UCXBs) neutron star (NS) + main sequence (MS) (Chen et al. 2020, ApJL) NS+ He star (Wang et al. 2021, MNRAS, in press)

- AM CVn star white dwarf (WD) + MS (Liu Jiang & Chen 2021, ApJ) WD+ He star (Liu et al. 2021, in preparation)
- Intermediate-mass black hole X-ray binaries (Chen 2020, ApJ, Han Jiang & Chen 2021, ApJ)

Binary millisecond pulsars (Chen 2020, PRD; Chen 2021, PRD)

Binary pulsar-LISA source

NS+MS channel:

 Table 1

 Selected Evolutionary Properties for UCXBs and Their Progenitors for Different Initial Donor Star Masses and Initial Orbital Periods

$M_{ m d,i}$ (M_{\odot})	P _{i,orb} (days)	(Gyr)	t _{deta} (Gyr)	P _{deta} (days)	$\stackrel{M_{ m wd}}{(M_{\odot})}$	t _{ucxb} (Gyr)	P _{ucxb} (days)	P _{min} (minutes)	f _{i,LISA} (mHz)	∆ <i>t</i> _{LISA} (Myr)
2.0	2.89	0.83	3.45	0.297	0.170	9.16	0.004	4.94	0.83	34.9
2.5	2.79	0.44	2.89	0.319	0.166	9.49	0.004	5.12	0.84	34.8
3.0	2.72	0.26	2.69	0.274	0.160	6.02	0.005	5.83	0.87	14.0
3.3	2.70	0.20	2.43	0.347	0.165	10.86	0.004	5.14	0.87	34.6

Note. The columns (from left to right): the initial donor-star mass, the initial orbital period, the stellar age at the beginning of Roche lobe overflow, the stellar age, and the orbital period when the binary becomes a detached system; the WD mass, the stellar age, and the orbital period when the system appears as a UCXB; the minimum orbital period; the initial GW frequency that the binary is detectable by LISA; and the timescale that the binary appears as LISA source.

Chen et al. 2020, ApJL

The detections of low-frequency GW signals can accurately constrain the masses of NSs (Tauris 2018, PRL)

$$\mathcal{M} = \frac{c^3}{G} \left(\frac{5\pi^{-8/3}}{96} f_{\rm gw}^{-11/3} \dot{f}_{\rm gw} \right)^{3/5},$$

$$\mathcal{M} = rac{(M_{\rm ns}M_{\rm d})^{3/5}}{(M_{\rm ns}+M_{\rm d})^{1/5}}.$$

Dual-line detection in lowfrequency and high-frequency GW bands?

Continuous high-frequency GW radiating by rotating NSs Ellipticity:

 I_2

ϵ	=	$(I_1$	—	$I_2)$	/1	3
C	_	(1)		(2)	11	-

Transitional MSPs

FABLE II. Some derived	parameters for	three transitional	MSPs.
------------------------	----------------	--------------------	-------

	$\dot{M}_{\rm acc}$ \dot{M}_{13} $r_{\rm m}$ $r_{\rm co}$ h		$r_{\rm lc}$	$\dot{ u}_{ m ac}$	$\dot{ u}_{ m pr}$	$\dot{ u}_{ m gr}$ ϵ		η		
Sources	$(10^{13} \text{ g s}^{-1})$		(10^6 cm)	(10^6 cm)	(10^6 cm)	$(10^{-16} \text{ Hz s}^{-1})$	$(10^{-15} \text{ Hz s}^{-1})$	$(10^{-15} \text{ Hz s}^{-1})$	(10 ⁻⁹)	(10 ⁻³¹ s)
J1023	1.62	10	5.7	2.4	8.1	0.83	-1.6	-1.52	0.9	1.2
J12270	2.27	14	5.2	2.4	8.1	1.1	-1.85	-2.16	1.0	1.4
J18245	540	540	1.8	4.2	18.9	158	0	-15.79	23.4	15.3

(Chen 2020, PRD)

Redbacks

	ν	ν	d	$\dot{ u}_{ m md}$	$\dot{ u}_{ m gr}$	€_9	h _c
Sources	(Hz)	$(10^{-15} \text{ Hz s}^{-1})$	(kpc)	$(10^{-16} \text{ Hz s}^{-1})$	$(10^{-15} \text{ Hz s}^{-1})$		(10^{-27})
PSR J1048 + 2339	214.35	-1.38	2.0	-0.96	-1.28	10.25	1.0
PSR J1227-4853	592.99	-3.9	1.61	-20.23	-1.88	0.97	0.9
PSR J1431-4715	497.03	-3.486	1.56	-11.91	-2.29	1.67	1.1
PSR J1622-0315	260.05	-0.784	1.14	-1.71	-0.61	4.37	1.1
PSR J1723-2837	538.87	-2.19	0.93	-15.18	-0.67	0.74	1.0
PSR J1740-5340A	273.95	-12.6	2.2	-1.99	-12.40	17.25	2.5
PSR J1748-2021D	74.10	-3.22	8.24	-0.04	-3.22	230.91	0.6
PSR J1816 + 4510	313.17	-4.227	4.36	-2.98	-3.93	6.95	0.7
PSR J1906 + 0055	358.48	-0.427	4.48	-4.47			
PSR J1957 + 2516	252.42	-1.748	2.66	-1.56	-1.59	7.59	0.8
PSR J2215 + 5135	383.2	-4.9	2.77	-5.46	-4.35	4.42	1.0
PSR J2339-0533	346.71	-1.695	1.1	-4.04	-1.29	3.09	1.4

TABLE III. Constraints on the ellipticity of twelve redbacks with observed spin-down rates.

These sources can be detected by the third-generation GW detectors like EinsteinTelescope.(Chen 2020, PRD)

Ultracompact binary pulsars

(Tauris 2018, PRL)

Compact NS+WD Dual-line GW sources

Orbital shrinkage of binary pulsars

Spin-down of NSs with an ellipticity

Samples	initial spin period	$f_{\rm high,0}$	d	<i>t</i> _{de}	<i>€</i> _7	$f_{ m high}$	$\dot{J}_{ m gr}$	$\dot{J}_{ m md}$	$ au_{ m gw}$	$h_{ m high}$
	(ms)	(Hz)	(kpc)	(Gyr)		(Hz)	$(g cm^2 s^{-2})$	$(g cm^2 s^{-2})$	(Gyr)	
1	1	2000	10	8.7	1	86	2.5×10^{29}	4.9×10^{27}	33	8.1×10^{-24}
2	2	1000	10	8.7	1	86	2.5×10^{29}	4.9×10^{27}	33	8.1×10^{-24}
3	2	1000	10	6.0	1	94	4.0×10^{29}	6.4×10^{27}	23	1.0×10^{-23}
4	2	1000	10	8.7	10	27	7.7×10^{28}	1.5×10^{26}	34	4.4×10^{-24}
5	2	1000	10	8.7	20	19	5.3×10^{28}	5.3×10^{25}	35	3.7×10^{-24}
6	2	1000	10	8.7	50	12	3.4×10^{28}	1.3×10^{25}	35	3.0×10^{-24}
7	2	1000	10	8.7	0.1	270	7.7×10^{29}	1.5×10^{29}	34	1.4×10^{-23}
8	2	1000	10	8.7	0.01	769	1.5×10^{30}	3.5×10^{30}	51	1.9×10^{-23}

TABLE I: Some input and derived parameters for NSs emitting high-frequency GW signals.

Chen 2021, PRD

Detectability of high-frequency GW signals

high-frequency GW signals with ~100 Hz can be detected by aLIGO within a distance of 1 kpc , while ET can detect a wide frequency range of 10–100 Hz.

For GW signals with a frequency of ~100 Hz, the detection horizon of ET can reach 10 kpc.

Significance of dual-line detections

• Detections of dual-line GW signals yield

$$\epsilon I = 1.0 \times 10^{44} \left(\frac{10 \text{ Hz}}{f_{\text{high}}}\right)^{5/2} \left(\frac{f_{\text{low}}}{1 \text{ mHz}}\right)^{7/6} \\ \times \left(\frac{\mathcal{M}}{1 M_{\odot}}\right)^{5/3} \left(\frac{h_{\text{high}}}{h_{\text{low}}}\right) \text{ g cm}^2.$$

• From the detections of highfrequency GW signals, we can obtain

$$\epsilon^2 I = -5.8 \times 10^{34} \left(\frac{\dot{f}_{\text{high}}}{10^{-17} \text{ Hz s}^{-1}} \right) \left(\frac{10 \text{ Hz}}{f_{\text{high}}} \right)^5 \text{ g cm}^2$$

I and ϵ are independent of the distance, and depend on five observed parameters $f_{\text{low}}, f_{\text{high}}, h_{\text{low}}, h_{\text{high}}$, and *chirp mass*.

NS radius can be calculated from the derived *I* and *M*ns, and then the
EOS of NSs can be constrained

Conclusions

- ➢ When the ellipticities of NSs are (1−50)× 10⁻⁷, compact binary pulsars can become dual-line GW sources
- High-frequency GW signals have a frequency of 10-100 Hz, and can be detected by aLIGO or ET.
- > Dual-line GW sources can help us to constrain EOS of NSs.
- Confirmation for dual-line GW sources must depend on the observed parameters of known binary pulsars.

Thank you!