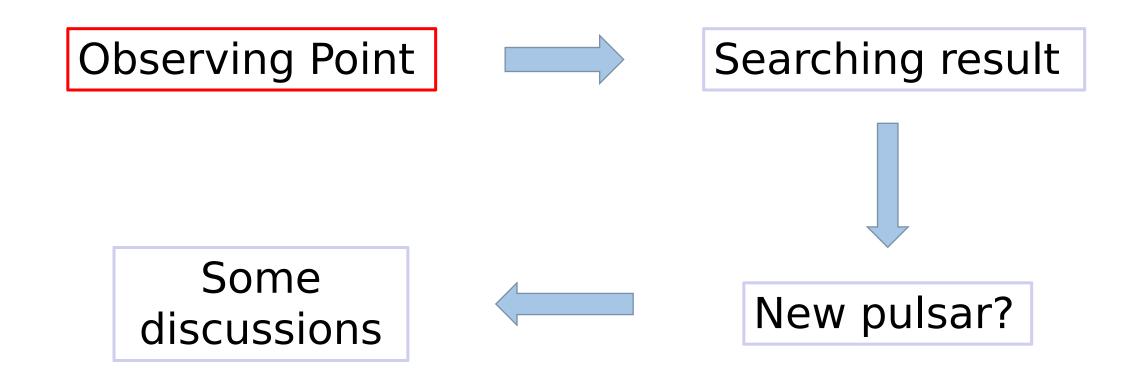
Discovery of the Pulsar J2016+3711 in Supernova Remnant CTB87 with FAST

Qian-cheng Liu (刘前程)


Collaborators: Yang Chen (陈阳); Pei Wenjuan Zhong (钟文娟); Wang (王培); Ping Zhou (周平); Youlin Yue (岳友岭); Di Li (李菂)

Department of Astronomy, NJU

2021.07.14

Introduction

- Pulsar Wind Nebula (PWN):
 - An important component of supernova remnant (SNR)
 - Produced by relativistic winds of rotation powered neutron star
 - Containing pulsar
- Searching pulsar in PWN can:
 - Study the pulsar formation and the SN explosion mechanism
 - Bridge the gap between the theoratic and observation

- In the 2019 'risk-sharing' observation
- Using FAST, central beam
- 1.05 1.45GHz receiver
- 4096 frequency chanels
- Time resolution: 49.152us
- Toward 5 targets
- HPBW ~ 3.5' at 1.1GHz

• Using FAST, central heam

• In the 2019 'share observation

1.05 - 1.45GHz rec

4096 frequency ch

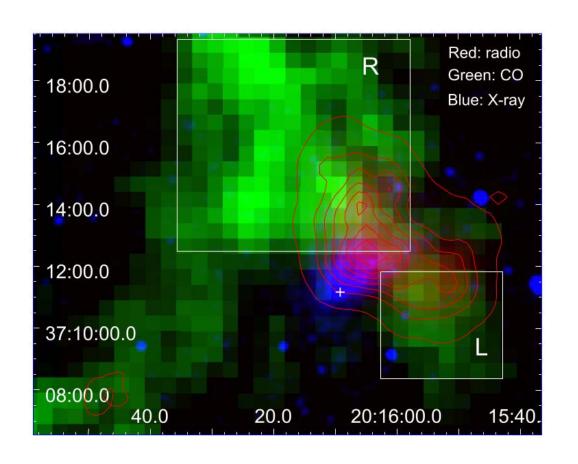
• Time resolution: 49

Toward 5 targets

HPBW ~ 3.5' at 1.1

Name	RA	Dec	LST Rise	LST Set	Integration time (s)	Repeats
CTB 87	20:16:09.2	37:11:10.5	18:30	22:10	3600	1
HESS J1832- 093 (G22.7- 00.2)*	18:32:45.04	-09:21:53.9	17:20	19:50	3600	1
3C 396	19:04:04.7	05:27:11.8	17:50	19:20	3600	1
DA 495	19:52:12	29:25	18:00	21:50	3600	1
DA 530*	20:52:20	55:17	18:30	22:30	3600	1

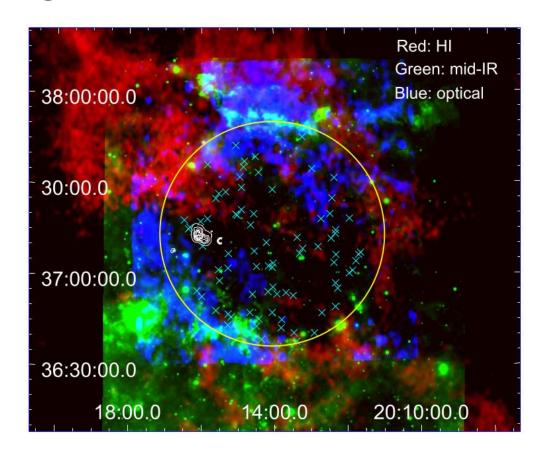
- Using FAST, central
- In the 2019 'shared observation
- 1.05 1.45GHz rec
- 4096 frequency ch
- Time resolution: 49
- Toward 5 targets


Name	RA	Dec	LST Rise	LST Set	Integration time (s)	Repeats
CTB 87	20:16:09.2	37:11:10.5	18:30	22:10	3600	1
HESS J1832- 093 (G22.7- 00.2)*	18:32:45.04	-09:21:53.9	17:20	19:50	3600	1
3C 396	19:04:04.7	05:27:11.8	17:50	19:20	3600	1
DA 495	19:52:12	29:25	18:00	21:50	3600	1
DA 530*	20:52:20	55:17	18:30	22:30	3600	1

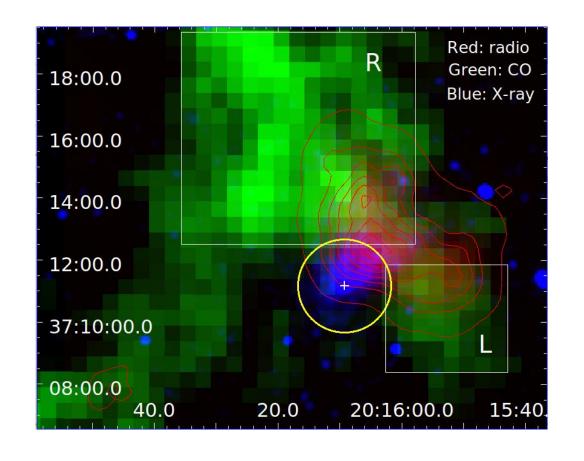
HPBW ~ 3.5' at 1.1GHZ

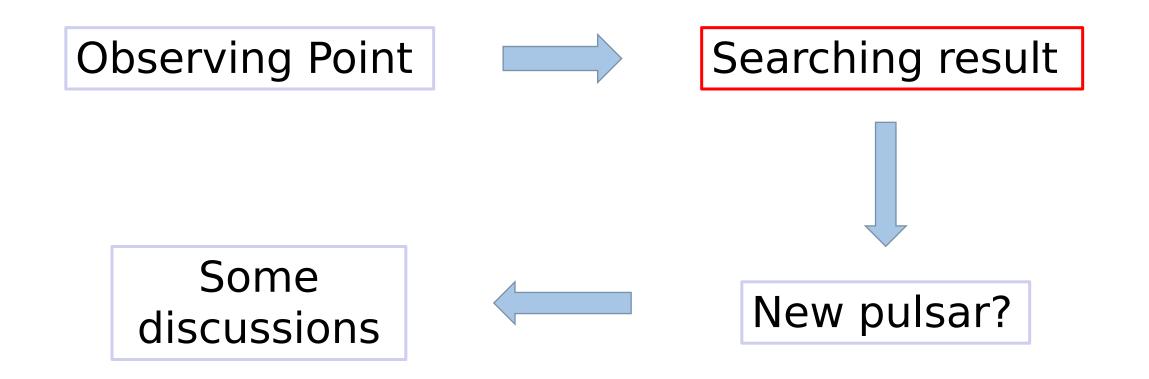
Unfortunately, only two target's data are usable

SNR CTB87

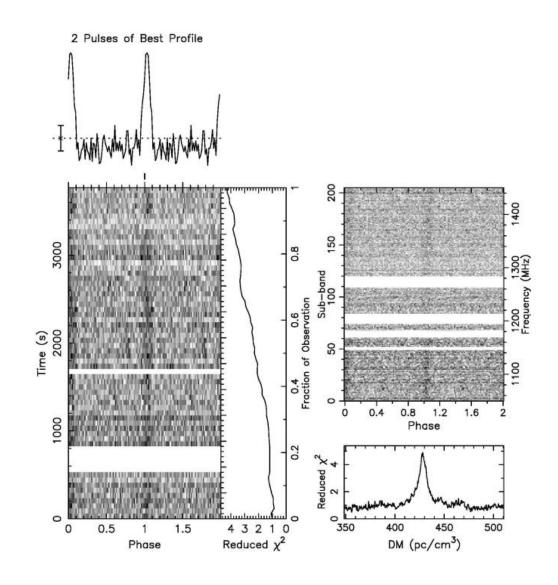

- A filled-center-type SNR
- l=74.9 b=+1.2
- Distance: ~6.1kpc
- X-ray: PWN + point source
- Associated with MC at ~-58km/s
- Located in a superbubble

Multiwave map of CTB87
---- Liu et al. 2018


SNR CTB87

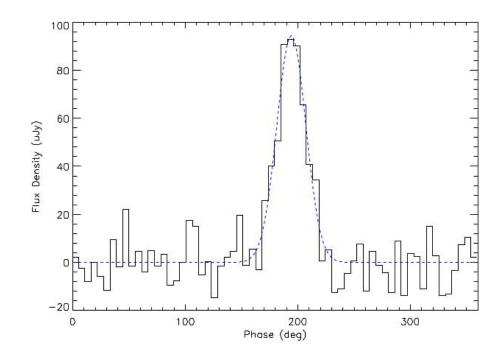

- A filled-center-type SNR
- l=74.9 b=+1.2
- Distance: ~6.1kpc
- X-ray: PWN + point source
- Associated with MC at ~-58km/s
- Located in a superbubble

Multiwave morphology of the superbubble toward CTB87 ---- Liu et al. 2018

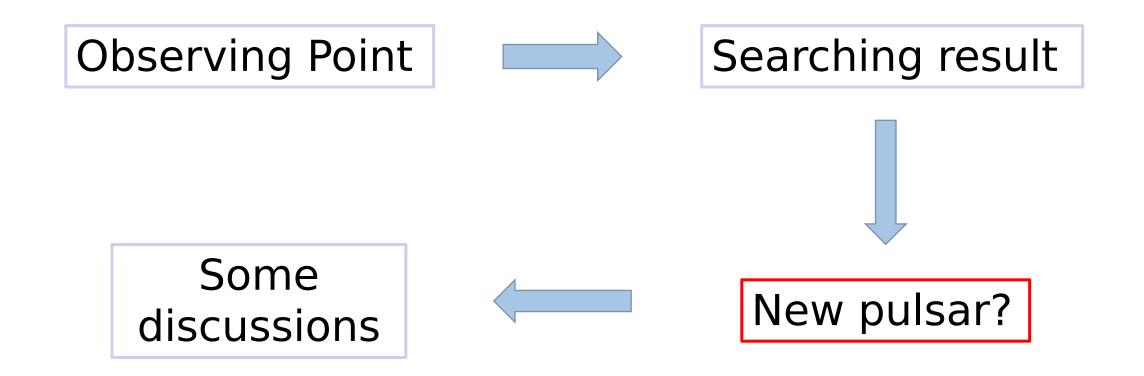

- Using FAST, central beam
- In the 2019 'shared risk' observation
- 1.05 1.45GHz receiver
- 4096 frequency chanels
- Time resolution: 49.152us
- Toward 2/5 targets
- HPBW ~ 3.5' at 1.1GHz

Detected radio pulses toward SNR CTB87

- 1. Significance: 10.8
- 2. P ~ 50.8 ms, DM ~ 430 pc cm⁻³
- 3. $d_{DM} = 13.3 \text{kpc vs.}$ $d \sim 6.1 \text{kpc}$
- Yet no significant γ-ray pulsation have been found

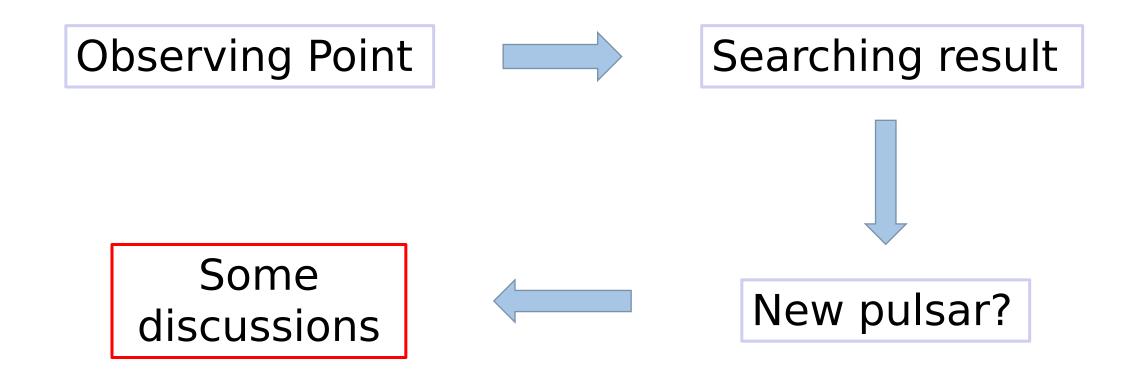

The integrated pulse profile

Can be well described by a single Gaussian component


The width of the profile:

 $W50 \approx 28.1^{\circ}$

Weff $\approx 32.2^{\circ}$


Integrated pulse profile

Is the radio pulse from a new discovered pulsar?

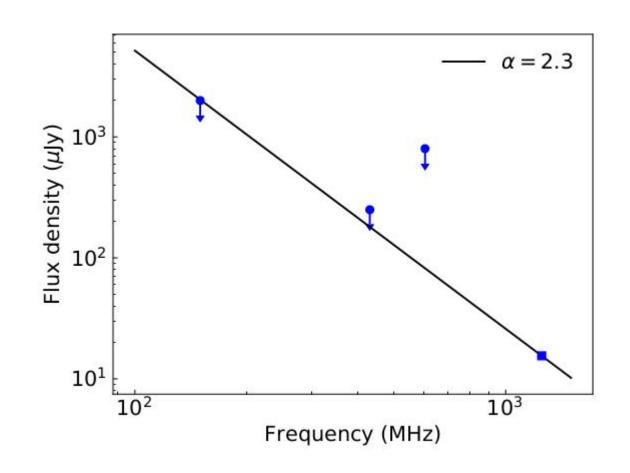
Pulsar	RA	Dec	Offset	DM	Period
			(degree)	$(pc cm^{-3})$	(ms)
J2004+3429	20:04:46.9	+34:29:17.7	3.55	351.0	240.95
J2005+3411g	20:05:45	+34:11	3.77	489.0	651.05
J2005+3547	20:05:17.4	+35:47:25.4	2.59	401.6	615.03
J2005+3552	20:05:47.5	+35:52:24.3	2.46	455.0	307.94
J2010+3230	20:10:26.5	+32:30:07.3	4.83	371.8	1442.45
J2021+3651	20:21:05.4	+36:51:04.8	1.04	367.5	103.74
J2022+3842	20:22:21.6	+38:42:14.8	1.95	429.1	48.58
J2022+3845g	20:22:11	+38:45	1.76	487.5	1008.90
J2030+3929g	20:30:47	+39:29	3.41	491.9	1718.42

Known pulsars near our target in 5° region with DM in 330 - 530

Flux density of the pulsar

Mean flux density ~ 15.5 uJy

$$F_{1.25\text{GHz}} = \frac{S_{\text{S/N}}\beta}{(N_p \Delta v \, t_{\text{int}})^{1/2}} \left(\frac{W_{\text{eff}}}{P - W_{\text{eff}}}\right)^{1/2} \frac{T_{\text{sys}} + T_{\text{sky}}}{G},$$


• 5σ upper limit: 2mJy at 150 MHz (straal+19), 0.25 mJy at 430 MHz (Gorham+96), 0.8 mJy at 606 MHz (Lorimer+98)

Spectral index

- 1. Pulsars have steep spectra in flux density $F_v \propto v^{-\alpha}$
- 2. $F_v = 15.5(v/1250)^{-\alpha}$ uJy

 $-> \alpha$ should < 2.3, not to contradict the typical value

Notably, some young pulsars have broken power law spectra

Other properties of the pulsar

- An estimate of the characteristic age $\tau \sim 10^4 \text{yr}$ was given (Matheson+ 13)
- $P_{dot} = P/[(n-1)\tau] \sim 8.5 \times 10^{-14} \text{ s s}^{-1}$
- Surface dipole magnetic field B ~ 2.1×10¹² G
- P_{dot} , τ , and B are crudely estimated -> need ToA observation to precisely measure/estimate them

Thanks!