PSR B1937+21 pulse-shape variability and timing residuals

Xiaojin Liu, Mike Keith, Ben Stappers,

Nancay, LEAP and EPTA Collaboration

PSR B1937+21

 Correlations between F-dot change and pulse-width change in normal pulsars

PSR B1937+21

- Correlations between F-dot and pulse-width in normal pulsars
- Shape changes found in J1643-1224, J1713+0747

PSR B1937+21

- Correlations between F-dot and pulse-width in normal pulsars
- Shape and TOA changes found in J1643-1224, J1713+0747
- High-precision TOAs in short timescale, but unusual large timing residuals

Pulse-shape changes of B1937: NANOGrav's result

Data used in this study

Tel.	Backend	MJD	Obs.	Freq. (MHz)	Bandwidth (MHz)
42-ft ^a	Cobra2	55890-58557	2393	610	5/10 ^b
Lovell	Roach	55890-58557	587	1520	384
LEAP ^c	-	55967-58586	73	1400	128
Nançy 1	NUPPI	55898-58493	214	1400	512
Nançy 2	NUPPI	56020-57574	28	2000	512
Nançy 3	NUPPI	56707-58442	42	2500	512

Data used in this study

	Tel.	Backend	MJD	Obs.	Freq. (MHz)	Bandwidth (MHz)
timing	42-ft ^a	Cobra2	55890-58557	2393	610	5/10 ^b
	Lovell	Roach	55890-58557	587	1520	384
	LEAP ^c	-	55967-58586	73	1400	128
	Nançy 1	NUPPI	55898-58493	214	1400	512
	Nançy 2	NUPPI	56020-57574	28	2000	512
	Nançy 3	NUPPI	56707-58442	42	2500	512

Data used in this study

	Tel.	Backend	MJD	Obs.	Freq. (MHz)	Bandwidth (MHz)	L
timing	42-ft ^a	Cobra2	55890-58557	2393	610	5/10 ^b	
	Lovell	Roach	55890-58557	587	1520	384	
1.4GHz	LEAP ^c	-	55967-58586	73	1400	128	
	Nançy 1	NUPPI	55898-58493	214	1400	512	
	Nançy 2	NUPPI	56020-57574	28	2000	512	
	Nançy 3	NUPPI	56707-58442	42	2500	512	

• De-dispersed with DM variation model: a power-law

 De-dispersed with DM variation model: a power-law power-law spectrum Calibrating with DM value from individual observations

- De-dispersed with DM variation model: a power-law
- Scrunching over f, t, p to get pulse profiles
- Aligning the profiles by the peak
- Normalizing with area

- De-dispersed with DM variation model: a power-law
- Scrunching over f, t, p to get pulse profiles
- Aligning the profiles by the peak
- Normalizing with area

pulse shape of each obs

template: median of each bin

shape variation = individual shape - template

Modeling the shape-variations

- Shape data: time-series $\begin{aligned} & \mathbf{x} = \{x_1, x_2, \cdots, x_n\} \\ & \mathbf{y} = \{y_1, y_2, \cdots, y_n\} \end{aligned}$
- Modeling the shape of each bin a time
- Assuming Gaussian —> Gaussian process regression
- Using a Matern kernel (covariance function) $k_{3/2}(x_i, x_j) = \sigma_f^2 \left(1 + \frac{\sqrt{3}d}{\lambda}\right) \exp\left(-\frac{\sqrt{3}d}{\lambda}\right) \quad \text{Brook+ 2018}$ $y_* = \mathbf{K}_* \mathbf{K}_{ij}^{-1} \mathbf{y}$

$$var(y_*) = \mathbf{K}_{**} - \mathbf{K}_* \mathbf{K}_{ij}^{-1} \mathbf{K}_*^T$$

where \mathbf{K}_{ij} is a covariance matrix with components $k(x_i, x_j)$

Examples of Gaussian process regression

Brook+ 2018

 $r_i/\langle \sigma_{
m off}
angle$

Examples of Gaussian process regression

Brook+ 2018

 $r_i/\langle \sigma_{
m off}
angle$

Results: 2000 & 2500 MHz main-pulse

Results: 2000 & 2500 MHz inter-pulse

Relation with timing residuals

Relation with timing residuals

Conclusion

- We used the Lovell, LEAP, Nancy data to search for shape changes in B1937+21
- Gaussian process regression was applied in modeling the shape variations
- No shape-change was found up to our data precision