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=M Neutron Stars

e Recently, there are few compact objects lying in the possible low mass gap 2.5 — 5 M detected by LIGO/
Virgo.

e The nature of these objects is still not known, due to the uncertainty of the maximum mass of NSs, M4y




Introduction

e Theoretically, the maximum mass can be derived from the underlying
equation of state (EOS) through the TOV equations. Therefore, one can
constrain the maximum mass by constraining the EOS.

e There are many NS observables that can put constraints on the EOS,
e.g., the masses, the radii and the tidal deformability.

e However, the EOS constraints from LIGO/Virgo and NICER are usually
based on e.g., the piecewise polytrope EOS model, which does not

explicitly include phase transitions.

* |n the following, we perform a Bayesian analysis to infer the maximum
mass in the context of a first-order phase transition from hadronic
matter into quark matter inside NSs’ dense cores, by incorporating
the available NS observations.
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Constructing the EOS

We consider the EOS with a strong first-order phase transition.

® Low density hadron matter:

To test the effect of low density hadronic EOS,
we employ two representative EOSs, i.e.,
soft EOS : QMF model
or stiff EOS : DD2 model
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Both two EOSs are consistent with experiment

constraints at around nuclear saturation density. Nuclear
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® High density quark matter — Constant Speed of Sound

(CSS) parameterization Ptrans
Pressure

2
Parameters: (yans/ 7o, A&/ Eang, Com)
Alford et al. 2013

® ThefullEOSis

5HM(p)a P < ptrans
E(p — A —2 . ’
EHM(ptrans) + € + CQM(p ptrans)’ p > ptrans
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We consider the EOS with a strong first-order phase transition. CTo e ossesesm o
e Low density hadron matter: "~ bo2 s cssamoss e
To test the effect of low density hadronic EOS, gwl
we employ two representative EOSs, i.e., =
soft EOS : QMF model 101 |
or stiff EOS : DD2 model 0l
Both two EOSs are consistent with experiment 107 by Inn:ocmil —

constraints at around nuclear saturation density.

® High density quark matter — Constant Speed of Sound
(CSS) parameterization

2
Parameters: (yans/ 7o, A&/ Eang, Com)

® ThefullEOSis

8HM(p)a 14 < Ptrans

e(p) = _ .
EHM(ptrans) + AE + Cth/I(p o ptrans)’ p > ptrans
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Constraining the maximum mass: a Bayesian approach

The Bayes's theorem

0| M)pd|8, M
p(@1d, ) = POMPEION). 0 1Mypa0, M)

p(d| M)

M: The QMF+CSS/DD2+CSS model

0 : parameters, including EOS parameters Ogoq = {7000/ 1» AE/Eqnes Ccng} and Oqw

d : observational data, including three measurements: the mass of MSP JO740+6620, the tidal

deformability from GW170817 and mass-radius of PSR JOO30+0451

p(d |6, M) : likelihood, which can be expressed as p(d|0,M) = £, X Ly X Lpsr

p(@| M) : prior for the parameters



Constraining the maximum mass: a Bayesian approach

1. Lower bound on Myqy from MSP JO740+6620

ng:
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Constraining the maximum mass: a Bayesian approach

2. Tidal deformability from GW170817

Assuming the noise in LIGO/Virgo detectors is stationary and Gaussian, the likelihood
IS often expressed as

BT
I (o2 J d(f) = hOow: N

5. /)

d(f) : the Fourier transforms of measured strain

%(HGW;f) : the frequency domain waveform generated using parameter 0y,

S, (f) : the power spectral density (PSD)

In our analysis, we choose the waveform template: IMRPhenomD_NRTidal

HGW — {%9 Q9 Ala Aza)(lza)(zza qﬁa \Pa ejna tca <, A, 5}

N = A (Ogpg; M) M, = (1 + IR
Ny = NyOposiMy) M, = Mg



Constraining the maximum mass: a Bayesian approach

3. Mass-radius measurement of PSR JOO30+0451 from NICER Riley et al. 2019

We employ a kernel density estimate of the mass-radius [\ ST+PST
samples S from Riley et al. 2019 as the likelihood function, i.e.,
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where the M and R can be mapped from the EOS and the
central pressure, p.., 0125

. /"l:i_ = 1.2
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Constraining the maximum mass: a Bayesian approach

Parameters and Priors:

In total, our parameters set 1S
0 = Opos U Ogw U (P}
HEOS — {ntrans/ Ny, Ae/ €trans’ C(%M}

Ocw = { M, q, Ny(My), My(Mo), 1 X0 @ F, O, 1

> ¥ 1n° “¢?

Priors for EOS parameters:

Z,a,0)

U(1,7) for QMF+CSS
Mygans/ Mo U(1,6) for DD2+CSS
Ael e U(0.2)
2y U(1/3,1)
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Priors for GW parameters:

Y U(1.18,1.21) M,
g U(0.5,1)
11 U(-0.05,0.05)
1. U(-0.05,0.05)

7 U(0,27)

P U(0,2m)

cos 0, U(-1,1)

' U(1187008882,1187008883) s
Z 0.0099

% 197.450374°

) —23.381495°




Results: the EOS

QMF-+CSS ‘ DD2+CSS
3.0r —— DD2 =

3.0F

--- DD2+CSS(1.61,0.56,0.80)
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-—- QMF + CSS(2.04,0.28,0.81)
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log(e) (MeV /fm?) log(e) (MeV /fm?)

e Both GW170817 and JOO30 data can put strong constraints on the EOS at densities
~ 200 — 600 MeV/fm> ( ~ 1.5 —4p,).

* An early phase transition with a large sound speed quark core (i.e., n,,. ~ 2ny,and

com ~ 0.9) is preferred by currently available NS observations.
12



Reults: NS properties

The Maximum Mass

3.0 ' ' | ' ' ' ' | ' ' ' ' | ' ) ) '
| Qur+css | The inferred maximum mass is found to beM o, = 2.36% ) M
2-5;‘ DD2HEES Moy = 2.391“8:‘2% M) for QMF (DD2) (90% credible interval),
2ol ! which is insensitive to the hadronic EOS
- 10 ; |
0 15¢ B 7 Our results imply that the remnant of GW170817 ( ~ 2.74 M)
Lotk I could be a massive rotating NS, while the remnant of
| - | GW190425 ( ~ 3.4 M) is more likely a black hole. The
001 B 1 secondary component of GW190814 ( ~ 2.6 M) could also
ool % . =L i beasupermassive NS.
' 2.0 2.9 3.0 3.9

Mrov (Mg )
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Reults: NS properties

Various properties for 1.4 M and 2 M, stars (90% credible interval)

Parameters 2.14 M., Pulsar +GWI170817 +NICER +GW170817+NICER
R;.4/km QMF 11.6611-12 10.95-323 11.93+}:38
DD2 12361355 11.102588 12.5870% R, ~ 12km
Arg QMF 319435, 216155 3797 s A 4 ~ 300
DD2 449553 2143% 48671337 1.4
nf,/fm=3 QMF 0.4510% 0.5210:13 0.415013
DD2 041791 0.527912 0.417013
R> o/km QMF 1171331 11.16_435 12.11' 133
DD2 12,6433 11.23% )26 12.65F] 7]
Azo QMF 3218 22433 12755
DD?2 517411 2219 49753
nso/fm=> QMF 0.577057 0.6520:31 0.52*93}
DD2 0517032 0.65322 0.53%0%
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Summary Thank, gou!

e We perform a Bayesian analysis on the maximum mass of NSs with a quark core by using
several recent measurements of NS observables.

e We find an early phase transition at onset density ( ~ 2n,) along with a large sound
speed quark matter (cqoy ~ 0.9) is preferred by these measurements.

e The inferred maximum mass is Mgy ~ 2.4 M for NSs with a quark core, which is
insensitive to the hadronic EOS.
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