Constrains on the maximum mass of neutron stars with a quark core from LIGO/Virgo and NICER

Zhiqiang Miao Xiamen University ApJ, **913**, 27 (2021) arXiv: 2103.15119

2021.7.14 JINAN

Constraining the EOS: a Bayesian approach

Summary

Introduction

- Virgo.

The nature of these objects is still not known, due to the uncertainty of the maximum mass of NSs, M_{TOV}

Introduction

- Theoretically, the maximum mass can be derived from the underlying equation of state (EOS) through the TOV equations. Therefore, one can constrain the maximum mass by constraining the EOS.
- There are many NS observables that can put constraints on the EOS, e.g., the masses, the radii and the tidal deformability.
- However, the EOS constraints from LIGO/Virgo and NICER are usually based on e.g., the piecewise polytrope EOS model, which does not explicitly include phase transitions.
- In the following, we perform a Bayesian analysis to infer the maximum mass in the context of a first-order phase transition from hadronic matter into quark matter inside NSs' dense cores, by incorporating the available NS observations.

4

Constructing the EOS

We consider the EOS with a strong first-order phase transition.

Low density hadron matter:

To test the effect of low density hadronic EOS, we employ two representative EOSs, i.e.,

soft EOS : QMF model or stiff EOS : DD2 model

Both two EOSs are consistent with experiment constraints at around nuclear saturation density.

High density quark matter — Constant Speed of Sound (CSS) parameterization

Parameters: $(n_{\text{trans}}/n_0, \Delta \varepsilon / \varepsilon_{\text{trans}}, c_{\text{OM}}^2)$

The full EOS is

$$\varepsilon(p) = \begin{cases} \varepsilon_{\rm HM}(p), & p < p_{\rm trans} \\ \varepsilon_{\rm HM}(p_{\rm trans}) + \Delta \varepsilon + c_{\rm QM}^{-2}(p - p_{\rm trans}), & p > p_{\rm trans} \end{cases}$$

Alford et al. 2013

ns

ns

5

Constructing the EOS

We consider the EOS with a strong first-order phase transition.

Low density hadron matter:

To test the effect of low density hadronic EOS, we employ two representative EOSs, i.e.,

soft EOS : QMF model or stiff EOS : DD2 model

Both two EOSs are consistent with experiment constraints at around nuclear saturation density.

 High density quark matter — Constant Speed of Sound (CSS) parameterization

Parameters: $(n_{\text{trans}}/n_0, \Delta \varepsilon / \varepsilon_{\text{trans}}, c_{\text{QM}}^2)$

• The full EOS is

$$\varepsilon(p) = \begin{cases} \varepsilon_{\rm HM}(p), & p < p_{\rm trans} \\ \varepsilon_{\rm HM}(p_{\rm trans}) + \Delta \varepsilon + c_{\rm QM}^{-2}(p - p_{\rm trans}), & p > p_{\rm trans} \end{cases}$$

6

The Bayes's theorem

 $p(\boldsymbol{\theta} \mid \boldsymbol{d}, \mathbb{M}) = \frac{p(\boldsymbol{\theta} \mid \mathbb{M})p(\boldsymbol{d} \mid \boldsymbol{\theta}, \mathbb{M})}{p(\boldsymbol{d} \mid \mathbb{M})} \propto p(\boldsymbol{\theta} \mid \mathbb{M})p(\boldsymbol{d} \mid \boldsymbol{\theta}, \mathbb{M})$

M: The QMF+CSS/DD2+CSS model

 $\boldsymbol{\theta}$: parameters, including EOS parameters $\boldsymbol{\theta}$

d: observational data, including three measurements: the mass of MSP J0740+6620, the tidal deformability from GW170817 and mass-radius of PSR J0030+0451 $p(d | \theta, M)$: likelihood, which can be expressed as $p(d | \theta, M) = \mathscr{L}_{M_c} \times \mathscr{L}_{GW} \times \mathscr{L}_{PSR}$ $p(\boldsymbol{\theta} \mid \mathbb{M})$: prior for the parameters

$$\theta_{\rm EOS} = \{n_{\rm trans}/n_0, \Delta \varepsilon/\varepsilon_{\rm trans}, c_{\rm QM}^2\}$$
 and $\theta_{\rm GW}$

1. Lower bound on $M_{\rm TOV}$ from MSP J0740+6620

$$\mathscr{L}_{M_s} = \int_0^{M_{\text{TOV}}(\boldsymbol{\theta}_{\text{EOS}})} P(M_s) dM_s$$

For MSP J0740+6620, $\mu = 2.14\,M_\odot$ and $\sigma = 0.1\,M_\odot$

$$\mathscr{L}_{M_s} = \Phi(\frac{M_{\text{TOV}}(\boldsymbol{\theta}_{\text{EOS}}) - \mu}{\sigma})$$

$$\Phi(x) \equiv \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

2. Tidal deformability from GW170817 Assuming the noise in LIGO/Virgo detectors is stationary and Gaussian, the likelihood is often expressed as

$$\mathcal{L}_{\rm GW} \propto \exp(-2\int \frac{|\tilde{d}(f) - \tilde{h}(\boldsymbol{\theta}_{\rm GW}; f)|^2}{S_n(f)} df)$$

 $\tilde{d}(f)$: the Fourier transforms of measured strain $h(\theta_{GW}; f)$: the frequency domain waveform generated using parameter θ_{GW} $S_n(f)$: the power spectral density (PSD) In our analysis, we choose the waveform template: IMRPhenomD_NRTidal

$$\boldsymbol{\theta}_{\mathrm{GW}} = \{\mathcal{M}, q, \Lambda_1, \Lambda_2, \chi_{1z}, \chi_{2z}, \varphi, \Psi, \theta_{\mathrm{jn}}, t_c, z, \alpha, \delta\}$$

$$\Lambda_1 = \Lambda_1(\boldsymbol{\theta}_{\text{EOS}}; M_1) \qquad M_1 = \mathcal{M}(1+q)^{1/5}/q^{3/5}$$
$$\Lambda_2 = \Lambda_2(\boldsymbol{\theta}_{\text{EOS}}; M_2) \qquad M_2 = M_1 q$$

3. Mass-radius measurement of PSR J0030+0451 from NICER Riley et al. 2019 $CI_{68\%} = 12.71^{+1.14}_{-1.19}$ $D_{\rm KL} = 0.78^{+0.02}_{-0.02}$ We employ a kernel density estimate of the mass-radius ST+PST samples S from Riley et al. 2019 as the likelihood function, i.e., $CI_{68\%} = 0.16^{+0.01}_{-0.01}$ $D_{\rm KL} = 2.78^{+0.03}_{-0.03}$ 0.175 ^{ba}*W*/*W* where the *M* and *R* can be mapped from the EOS and the central pressure, p_c , $CI_{68\%} = 1.34^{+0.15}_{-0.16}$ 0.125 $D_{\rm KL} = 1.26^{+0.02}_{-0.02}$ $M = M(\boldsymbol{\theta}_{\text{EOS}}; p_c)$ 1.75[[®]W] W $R = R(\theta_{\text{EOS}}; p_c)$ 1.25 100 225 150 0.125 0.150 0.150 135 130 170 300 $M \, [{\rm M}_\odot]$ $R_{\rm eq} \, [{\rm km}]$ $M/R_{
m eq}$

$$\mathscr{L}_{\rm PSR} = {\rm KDE}(M, R \,|\, S)$$

Parameters and Priors:

In total, our parameters set is

 $\boldsymbol{\theta} = \boldsymbol{\theta}_{\text{EOS}} \cup \boldsymbol{\theta}_{\text{GW}} \cup \{p_c\}$ $\boldsymbol{\theta}_{\text{EOS}} = \{n_{\text{trans}}/n_0, \Delta \varepsilon / \varepsilon_{\text{trans}}, c_{\text{OM}}^2\}$ $\boldsymbol{\theta}_{\text{GW}} = \{\mathcal{M}^{\text{det}}, q, \Lambda_1(M_1), \Lambda_2(M_2), \chi_{1z}, \chi_{2z}, \varphi, \Psi, \theta_{\text{in}}, t_c, z, \alpha, \delta\}$

Priors for EOS parameters:

,	U(1,7) for QMF+CSS	
$n_{\rm trans}/n_0$	U(1,6) for DD2+CSS	
$\Delta \varepsilon / \varepsilon_{\rm trans}$	U(0,2)	
$c_{\rm QM}^2$	U(1/3,1)	

Priors for GW parameters:

M	U(1.18,1.21)M _☉			
q	U(0.5,1)			
χ_{1z}	U(-0.05,0.05)			
χ_{1z}	U(-0.05,0.05)			
φ	U(0,2π)			
Ψ	U(0,2π)			
$\cos \theta_{jn}$	U(-1,1)			
t _c	U(1187008882,1187008883			
Z	0.0099			
α	197.450374°			
δ	-23.381495°			

Results: the EOS

- $\sim 200 - 600 \,\mathrm{MeV/fm^3}$ ($\sim 1.5 - 4\rho_0$).
- $c_{\rm OM} \sim 0.9$) is preferred by currently available NS observations.

Both GW170817 and J0030 data can put strong constraints on the EOS at densities

• An early phase transition with a large sound speed quark core (i.e., $n_{\text{trans}} \sim 2n_0$ and

Reults: NS properties

The Maximum Mass

The inferred maximum mass is found to $be_{M_{TOV}} = 2.36^{+0.49}_{-0.26} M_{\odot}$ $(M_{\text{TOV}} = 2.39^{+0.42}_{-0.28} M_{\odot})$ for QMF (DD2) (90% credible interval), which is insensitive to the hadronic EOS

Our results imply that the remnant of GW170817 ($\sim 2.74 M_{\odot}$) could be a massive rotating NS, while the remnant of GW190425 ($\sim 3.4 M_{\odot}$) is more likely a black hole. The secondary component of GW190814 ($\sim 2.6 M_{\odot}$) could also be a supermassive NS.

Reults: NS properties

Various properties for $1.4\,M_{\odot}$ and $2\,M_{\odot}$ stars (90% credible interval)

	2.14 M_{\odot} Pulsar	+GW170817	+NICER	+GW170817+NICER
QMF DD2	$11.66^{+1.75}_{-1.70} \\ 12.36^{+1.49}_{-2.02}$	$10.95^{+1.23}_{-0.86}\\11.10^{+1.66}_{-0.83}$	$11.93^{+1.36}_{-0.99} \\ 12.58^{+0.79}_{-1.60}$	$\begin{array}{c} 11.70^{+0.85}_{-0.74} \\ 11.95^{+1.04}_{-0.94} \\ R_{1.4} \end{array}$
QMF DD2	$\begin{array}{r} 319^{+595}_{-194} \\ 449^{+625}_{-309} \end{array}$	$216^{+235}_{-85}\\214^{+329}_{-79}$	$\begin{array}{r} 379^{+469}_{-188} \\ 486^{+337}_{-305} \end{array}$	312^{+254}_{-124} 333^{+298}_{-148} Λ_1 .
QMF DD2	$\begin{array}{c} 0.45\substack{+0.20\\-0.19}\\ 0.41\substack{+0.23\\-0.16}\end{array}$	$\begin{array}{c} 0.52\substack{+0.12\\-0.15}\\ 0.52\substack{+0.12\\-0.15}\end{array}$	$\begin{array}{c} 0.41\substack{+0.18\\-0.14}\\ 0.41\substack{+0.19\\-0.13}\end{array}$	$\begin{array}{c} 0.48\substack{+0.13\\-0.15}\\ 0.46\substack{+0.14\\-0.12}\end{array}$
QMF DD2	$11.71_{-1.53}^{+2.47} \\ 12.64_{-2.10}^{+1.84}$	$11.16^{+1.48}_{-0.92}\\11.23^{+1.70}_{-0.86}$	$12.11_{-1.37}^{+1.88} \\ 12.65_{-1.73}^{+1.17}$	$\frac{11.66^{+1.46}_{-1.02}}{12.05^{+1.18}_{-1.22}}$
QMF DD2	$\begin{array}{c} 32^{+118}_{-23} \\ 51^{+111}_{-39} \end{array}$	$\begin{array}{c} 22^{+38}_{-12} \\ 22^{+40}_{-12} \end{array}$	$\begin{array}{r} 42^{+92}_{-30} \\ 49^{+64}_{-35} \end{array}$	$\begin{array}{c} 29^{+54}_{-17} \\ 36^{+44}_{-22} \end{array}$
QMF DD2	$\begin{array}{c} 0.57\substack{+0.32\\-0.27}\\ 0.51\substack{+0.32\\-0.23}\end{array}$	$\begin{array}{c} 0.65\substack{+0.23\\-0.21}\\ 0.65\substack{+0.22\\-0.20}\end{array}$	$\begin{array}{c} 0.52\substack{+0.33\\-0.21}\\ 0.53\substack{+0.29\\-0.20}\end{array}$	$\begin{array}{c} 0.60\substack{+0.27\\-0.22}\\ 0.56\substack{+0.24\\-0.17}\end{array}$
	QMF DD2 QMF DD2 QMF DD2 QMF DD2 QMF DD2 QMF DD2	$2.14 \ M_{\odot}$ PulsarQMF $11.66^{+1.75}_{-1.70}$ DD2 $12.36^{+1.49}_{-2.02}$ QMF $319^{+595}_{-2.02}$ QMF $0.45^{+0.20}_{-0.19}$ DD2 $0.41^{+0.23}_{-0.16}$ QMF $0.45^{+1.84}_{-2.10}$ QMF $11.71^{+2.47}_{-1.53}$ DD2 $12.64^{+1.84}_{-2.10}$ QMF 32^{+118}_{-23} DD2 51^{+111}_{-39} QMF $0.57^{+0.32}_{-0.27}$ DD2 $0.51^{+0.32}_{-0.23}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Summary

- We perform a Bayesian analysis on the maximum mass of NSs with a quark core by using several recent measurements of NS observables.
- We find an early phase transition at onset density ($\sim 2n_0$) along with a large sound speed quark matter ($c_{\rm OM} \sim 0.9$) is preferred by these measurements.
- The inferred maximum mass is $M_{\rm TOV} \sim 2.4 \, M_{\odot}$ for NSs with a quark core, which is insensitive to the hadronic EOS.

Thank you!

