Constrains on the maximum mass of neutron stars with a quark core from LIGO/Virgo and *NICER*

Zhiqiang Miao Xiamen University ApJ, **913**, 27 (2021) arXiv: 2103.15119

> 1 2021.7.14 JINAN

Constraining the EOS: a Bayesian approach

Introduction

- Virgo.
-

• The nature of these objects is still not known, due to the uncertainty of the maximum mass of NSs, $M_{\rm TOV}$

Introduction

4

- Theoretically, the maximum mass can be derived from the underlying equation of state (EOS) through the TOV equations. Therefore, one can constrain the maximum mass by constraining the EOS.
- There are many NS observables that can put constraints on the EOS, e.g., the masses, the radii and the tidal deformability.
- However, the EOS constraints from LIGO/Virgo and NICER are usually based on e.g., the piecewise polytrope EOS model, which does not explicitly include phase transitions.
- In the following, we perform a Bayesian analysis to infer the maximum mass in the context of a first-order phase transition from hadronic matter into quark matter inside NSs' dense cores, by incorporating the available NS observations.

• Low density hadron matter:

Constructing the EOS

soft EOS : QMF model or stiff EOS : DD2 model

To test the effect of low density hadronic EOS, we employ two representative EOSs, i.e.,

Both two EOSs are consistent with experiment constraints at around nuclear saturation density.

Alford et al. 2013

ns

ns

• High density quark matter — Constant Speed of Sound (CSS) parameterization

Parameters: $(n_{\text{trans}}/n_0, \Delta \varepsilon/\varepsilon_{\text{trans}}, c_{\text{QM}}^2)$

We consider the EOS with a strong first-order phase transition.

5

• The full EOS is

$$
\varepsilon(p) = \begin{cases} \varepsilon_{\text{HM}}(p), & p < p_{\text{tran}} \\ \varepsilon_{\text{HM}}(p_{\text{trans}}) + \Delta \varepsilon + c_{\text{QM}}^{-2}(p - p_{\text{trans}}), & p > p_{\text{tran}} \end{cases}
$$

• Low density hadron matter:

Constructing the EOS

soft EOS : QMF model or stiff EOS : DD2 model

To test the effect of low density hadronic EOS, we employ two representative EOSs, i.e.,

Both two EOSs are consistent with experiment constraints at around nuclear saturation density.

• High density quark matter — Constant Speed of Sound (CSS) parameterization

Parameters: $(n_{\text{trans}}/n_0, \Delta \varepsilon/\varepsilon_{\text{trans}}, c_{\text{QM}}^2)$

We consider the EOS with a strong first-order phase transition.

6

• The full EOS is

$$
\varepsilon(p) = \begin{cases} \varepsilon_{\text{HM}}(p), & p < p_{\text{tran}} \\ \varepsilon_{\text{HM}}(p_{\text{trans}}) + \Delta \varepsilon + c_{\text{QM}}^{-2}(p - p_{\text{trans}}), & p > p_{\text{tran}} \end{cases}
$$

The Bayes's theorem

 $p(\bm{\theta} \,|\, \bm{d}, \mathbb{M}) =$ *p*(*θ*|𝕄)*p*(*d*|*θ*, 𝕄) p (*d* | M) $\propto p(\boldsymbol{\theta} | \mathbb{M}) p(d|\boldsymbol{\theta}, \mathbb{M})$

M: The QMF+CSS/DD2+CSS model

 $θ$: parameters, including EOS parameters $θ$

 \boldsymbol{d} : observational data, including three measurements: the mass of MSP J0740+6620, the tidal deformability from GW170817 and mass-radius of PSR J0030+0451 $p(\bm{d}\,|\,\bm{\theta},\mathbb{M})$: likelihood, which can be expressed as $p(\bm{d}\,|\,\bm{\theta},\mathbb{M})=\mathscr{L}_{M_s}\!\times\mathscr{L}_{\text{GW}}\!\times\mathscr{L}_{\text{PSR}}$ $p(\theta | M)$: prior for the parameters

$$
\theta_{\rm EOS} = \{n_{\rm trans}/n_0, \Delta \varepsilon / \varepsilon_{\rm trans}, c_{\rm QM}^2\}
$$
 and $\theta_{\rm GW}$

Constraining the maximum mass: a Bayesian approach

$$
\mathcal{L}_{M_s} = \Phi(\frac{M_{\text{TOV}}(\theta_{\text{EOS}}) - \mu}{\sigma})
$$

$$
\Phi(x) \equiv \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx
$$

Constraining the maximum mass: a Bayesian approach

1. Lower bound on $M_{\rm TOV}$ from MSP J0740+6620

8

$$
\mathcal{L}_{M_s} = \int_0^{M_{\text{TOV}}(\theta_{\text{EOS}})} P(M_s) dM_s
$$

For MSP J0740+6620, $\mu = 2.14 M_{\odot}$ and $\sigma = 0.1 M_{\odot}$

$$
\mathcal{L}_{GW} \propto \exp(-2\int \frac{|\tilde{d}(f) - \tilde{h}(\theta_{GW}; f)|^2}{S_n(f)} df)
$$

In our analysis, we choose the waveform template: IMRPhenomD_NRTidal $d(f)$: the Fourier transforms of measured strain $h(\theta_{GW}; f)$: the frequency domain waveform generated using parameter θ_{GW} $S_n(f)$: the power spectral density (PSD)

2. Tidal deformability from GW170817 Assuming the noise in LIGO/Virgo detectors is stationary and Gaussian, the likelihood is often expressed as

$$
\boldsymbol{\theta}_{\rm GW} = \{ \mathcal{M}, q, \Lambda_1, \Lambda_2, \chi_{1z}, \chi_{2z}, \varphi, \Psi, \theta_{\rm jn}, t_c, z, \alpha, \delta \}
$$

$$
\Lambda_1 = \Lambda_1(\theta_{\text{EOS}}; M_1) \qquad M_1 = \mathcal{M}(1+q)^{1/5} / q^{3/5}
$$

$$
\Lambda_2 = \Lambda_2(\theta_{\text{EOS}}; M_2) \qquad M_2 = M_1 q
$$

Constraining the maximum mass: a Bayesian approach

Constraining the maximum mass: a Bayesian approach

3. Mass-radius measurement of PSR J0030+0451 from NICER $\frac{C[\text{loss} = 12.71^{+1.14}_{-1.19}}{C[\text{loss} = 12.71^{+1.14}_{-1.19}}$ $D_{\text{KL}} = 0.78_{-0.02}^{+0.02}$ We employ a kernel density estimate of the mass-radius ST+PST samples *S* from Riley et al. 2019 as the likelihood function, i.e., $CI_{68\%} = 0.16_{-0.01}^{+0.01}$ $D_{\text{KL}} = 2.78_{-0.03}^{+0.03}$ $\mathscr{L}_{PSR} = \text{KDE}(M, R \mid S)$ $0.175 M/R_{\rm eq}$ 0.15 where the M and R can be mapped from the EOS and the central pressure, p_c , $CI_{68\%} = 1.34_{-0.16}^{+0.15}$ 0.125 $D_{\text{KL}} = 1.26_{-0.02}^{+0.02}$ $M = M(\theta_{\text{EOS}}; p_c)$ 1.75 $\overline{\text{M}}$ $\overline{\text{M}}$ $\overline{\text{M}}$ $R = R(\theta_{\text{EOS}}; p_c)$ $1.25\,$ 10.0 12.5 13.0 0.125 0.175 120 120 120 $R_{\rm eq} \; [\rm km]$ M $[\mathrm{M}_{\odot}]$ $M/R_{\rm eq}$

$$
\mathcal{L}_{PSR} = \text{KDE}(M, R \mid S)
$$

Constraining the maximum mass: a Bayesian approach

In total, our parameters set is

 $\theta = \theta_{\text{EOS}} \cup \theta_{\text{GW}} \cup \{p_c\}$ $\theta_{\text{EOS}} = \{n_{\text{trans}}/n_0, \Delta \varepsilon / \varepsilon_{\text{trans}}, c_{\text{QM}}^2\}$ $\theta_{\rm GW} = \{ \mathcal{M}^{\rm det}, q, \Lambda_1(M_1), \Lambda_2(M_2), \chi_{1z}, \chi_{2z}, \varphi, \Psi, \theta_{\rm jn}, t_c, z, \alpha, \delta \}$

Parameters and Priors:

Priors for EOS parameters:

Priors for GW parameters:

Results: the EOS

12 • An early phase transition with a large sound speed quark core (i.e., $n_{\rm trans} \sim 2 n_0$ and

- ~ 200 600 MeV/fm³ (~ 1.5 4 ρ_0).
- c_{QM} ∼ 0.9) is preferred by currently available NS observations.

• Both GW170817 and J0030 data can put strong constraints on the EOS at densities

Reults: NS properties

The inferred maximum mass is found to be $M_{\rm TOV} = 2.36^{+0.49}_{-0.26}\,M_{\odot}$ $(M_{\text{TOV}} = 2.39^{+0.42}_{-0.28} M_{\odot})$ for QMF (DD2) (90% credible interval), which is insensitive to the hadronic EOS

Our results imply that the remnant of GW170817 ($\sim 2.74 \, M_\odot$) could be a massive rotating NS, while the remnant of GW190425 ($\sim 3.4 M_{\odot}$) is more likely a black hole. The secondary component of GW190814 ($\sim 2.6\,M_\odot$) could also be a supermassive NS.

The Maximum Mass

Reults: NS properties

Various properties for 1.4 *M*⊙ **and** 2 *M*⊙ **stars (90% credible interval)**

Summary *Thank you!*

- We perform a Bayesian analysis on the maximum mass of NSs with a quark core by using several recent measurements of NS observables.
- We find an early phase transition at onset density ($\sim 2 n_0$) along with a large sound speed quark matter (c_{QM} \sim 0.9) is preferred by these measurements.
- The inferred maximum mass is $M_{\rm TOV} \sim 2.4\,M_\odot$ for NSs with a quark core, which is insensitive to the hadronic EOS.