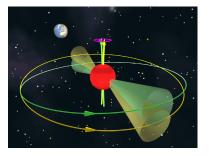


Testing Dipole Radiation with NSs

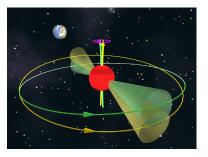

Kavli Institute for Astronomy and Astrophysics

Lijing Shao (邵立晶)

齐鲁师范学院,中国·济南

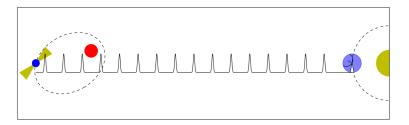
Pulsars

Pulsars are rotating magnetized neutron stars


Lijing Shao (邵立晶)

Dipole Radiation with NSs

齐鲁师范学院 1/17


Pulsars

- Pulsars are rotating magnetized neutron stars
- Due to their large moment of inertia and small external torque, their rotation is extremely stable ⇒ lighthouse

Pulsar Timing

- Large radio telescopes are used to record the times of arrival of pulses, which are affected by
 - Solar dynamics
 - Binary motion
 - Interstellar medium

Fundamental clocks in curved spacetime

Monster of Spacetime

Lijing Shao (邵立晶)

Dipole Radiation with NSs

齐鲁师范学院 4/17

NSs are almost BHs!

NSs are almost BHs!

Lijing Shao (邵立晶)

Dipole Radiation with NSs

齐鲁师范学院 5/17

NSs are almost BHs!

Lijing Shao (邵立晶)

Dipole Radiation with NSs

齐鲁师范学院 5/17

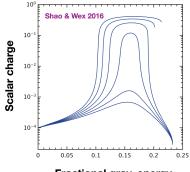
$$S = rac{c^4}{16\pi G_*}\int rac{\mathrm{d}^4 x}{c}\sqrt{-g_*}\left[R_* - 2g_*^{\mu
u}\partial_\muarphi\partial_
uarphi - V(arphi)
ight] + S_m\left[\psi_m; A^2(arphi)g_{\mu
u}^*
ight]$$

Damour & Esposito-Farèse 1992; 1993; 1996

Lijing Shao (邵立晶)

Dipole Radiation with NSs

齐鲁师范学院 6/17

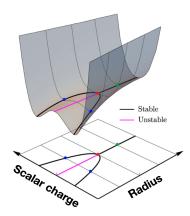

$$S = \frac{c^4}{16\pi G_*} \int \frac{\mathrm{d}^4 x}{c} \sqrt{-g_*} \left[R_* - 2g_*^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - V(\varphi) \right] + S_m \left[\psi_m; A^2(\varphi) g_{\mu\nu}^* \right]$$

 A class of cosmologically well-motivated scalar-tensor theories, that are solely described by two theory parameters: α₀ & β₀

$$egin{aligned} V(arphi) &= 0 \ A(arphi) &= \exp\left(eta_0arphi^2/2
ight) \,, \quad lpha_0 &= eta_0arphi_0 \end{aligned}$$

Damour & Esposito-Farèse 1992; 1993; 1996

Dipole Radiation with NSs


Fractional grav. energy

Nonperturbative spontaneous scalarization

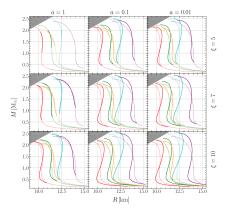
could happen for isolated neutron stars

Damour & Esposito-Farèse 1992; 1993; 1996

Dipole Radiation with NSs

Strong-field behavior is analogous to Landau's phase transition after a critical point

Damour & Esposito-Farèse 1996; Esposito-Farèse 2004; Sennett, Shao, Steinhoff 2017


Lijing Shao (邵立晶)

Dipole Radiation with NSs

齐鲁师范学院 8/17

Massive Scalar-Tensor Gravity

- When a mass term is included, say $V(\varphi) \sim m^2 \varphi^2$, a
 - Yukawa-type suppression happens for the deviation

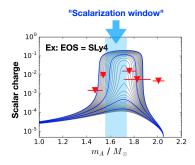
Ramazanoğlu & Pretorius 2016; Xu, Gao, Shao 2020; Hu, Gao, Xu, Shao, in prep

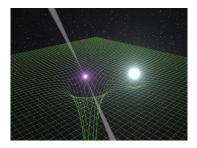
Lijing Shao (邵立晶)

Strong-field gravity can be VERY different from weak-field gravity

Due to their asymmetry, neutron-star white-dwarf systems

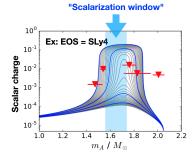
provide stringent limits on dipole radiation $P_b^{\text{clipole}} \propto (\alpha_{\text{NS}} - \alpha_0)^2$

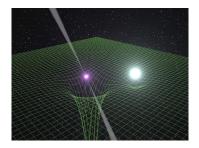



Dipole Radiation with NSs

齐鲁师范学院 10/17

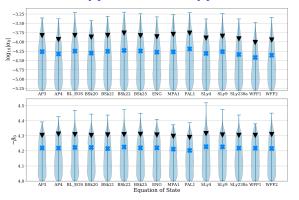
Combination of Multiple NS-WD Binaries


 Strong-field effects could happen at different NS masses for different EOSs [Shibata et al. 2014, PRD 89:084005]



Combination of Multiple NS-WD Binaries

- Strong-field effects could happen at different NS masses for different EOSs [Shibata et al. 2014, PRD 89:084005]
- Combining NS-WDs put the best limits on a class of scalar tensor theories for different EOSs [Shao et al. 2017, PRX 7:041025]



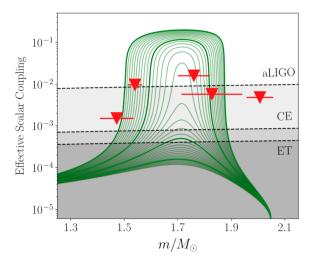
Combination of Multiple NS-WD Binaries

Reduced-order surrogate models to speed up Markov-chain

Monte Carlo runs: pySTGROM,¹ & pySTGROMX²

¹https://github.com/BenjaminDbb/pySTGROM ²https://github.com/mh-guo/pySTGROMX

Lijing Shao (邵立晶)

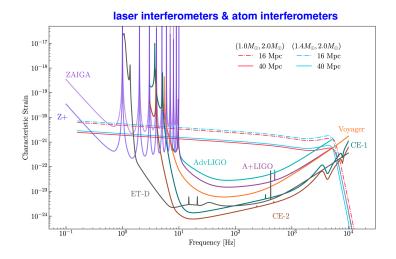

Dipole Radiation with NSs

Zhao, Shao, et al. 2019 Guo, Zhao, Shao, arXiv:2106.01622

12/17

齐鲁师范学院

Gravitational Waves

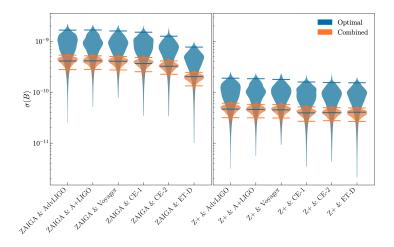

Will 1994; Damour & Esposito-Farèse 1998; Shao et al. 2017, PRX

Lijing Shao (邵立晶)

Dipole Radiation with NSs

齐鲁师范学院 13/17

Gravitational Waves


Esposito-Farèse 1998; Zhao, Shao, et al., arXiv:2106.04883

Lijing Shao (邵立晶)

Dipole Radiation with NSs

齐鲁师范学院 14/17

Gravitational Waves

Zhao, Shao, et al., arXiv:2106.04883

Dipole Radiation with NSs

Testing dipole radiation is an important part for validating the strong equivalence principle, thus GR

- Testing dipole radiation is an important part for validating the strong equivalence principle, thus GR
- Binary pulsars & binary NS mergers provide excellent strong-field laboratories for testing dipole radiation

- Testing dipole radiation is an important part for validating the strong equivalence principle, thus GR
- Binary pulsars & binary NS mergers provide excellent strong-field laboratories for testing dipole radiation
- Radio telescopes, ground-based laser/atom interferometers, as well as space-based GW detectors [Liu, Shao, Zhao, Gao 2020] can be utilized to achieve high-precision tests of dipole radiation

- Testing dipole radiation is an important part for validating the strong equivalence principle, thus GR
- Binary pulsars & binary NS mergers provide excellent strong-field laboratories for testing dipole radiation
- Radio telescopes, ground-based laser/atom interferometers, as well as space-based GW detectors [Liu, Shao, Zhao, Gao 2020] can be utilized to achieve high-precision tests of dipole radiation

We will see ;-)

An Oriental Express of Science to the World

