FAST/Future Pulsar Symposium (FPS) 11

August 3-5, 2022, Xiangtan University, Xiangtan, Hunan

Precession of magnetars dynamical evolutions and modulations on polarized electromagnetic waves

 $Yong Gao (高勇)$

Department of Astronomy, School of Physics, Peking University

Collaborators

Lijing Shao, Gregory Desvignes, Ian Jones, Michael Kramer, Garvin Yim

August 04, 2022

Outline

• NS free precession and magnetars as condidates

• Precession dynamics of deformed magnetars

• Timing residuals and modulations on polarized

radio/X-ray emissions

What is free precession?

Free precession of a biaxial star

Jones & Andersson, MNRAS, 2001, 2002 Link & Epstein, ApJ, 2001

• A **deformed** NS will precess when the angular momentum and the deformation axis are **not aligned**

$$
\text{ellipticity } \epsilon = \frac{\Delta I_d}{I_0}
$$

wobble angle: *θ*

• The ellipticity for NSs is quite small

 $\epsilon \ll 10^{-4}$ from current calculations

 $\theta_1 \sim \epsilon \theta$, ω and L are nearly aligned

• Two superimposed motion:

$$
\omega = \omega_r \hat{L} - \omega_p \hat{e}_3 \qquad \omega_p = \epsilon \cos \theta \omega_r
$$

Precession period P_f = *P* $\epsilon \cos \theta$

Precession of NSs: why we study it

1. Elastic deformation of the crust

Cutler et al., PRD, 2003; Gittins et al., MNRAS, 2021

Important information on NS crust physics: shear modulus & breaking strain

Precession of NSs: why we study it

Superfluid does not support long precession period without damping

• A **perfectly pinned** superfluid, the Euler equation Shaham, ApJ, 1977

$$
L_{\rm c} + \omega \times L_{\rm c} = -\omega \times L_{\rm f} \longrightarrow \omega_{\rm p} \sim -\left(\epsilon + \frac{I_{\rm f}}{I_{\rm c}}\right)\omega
$$

Pinning gives a precession frequency too fast!

• "Mutual friction" between superfluid and crust leads to **damping of free precession**

$$
\frac{dJ_{\text{shell}}}{dt} = K(\Omega_{\text{fluid}} - \Omega_{\text{solid}}) = -\frac{dJ_{\text{fluid}}}{dt}
$$
 Alpar & Sauls, ApJ, 1988

• A glitch in PSR B1828-11 constrains moment of inertia participating into precession

$$
\frac{3}{2} \frac{\delta \nu / \nu}{P/P_{\text{fp}}} \le \frac{I_{\text{prec}}}{I_*} \le 1 \Rightarrow 0.93 \le \frac{I_{\text{prec}}}{I_*} \le 1 \qquad \text{D. I. Jones et al., PRL, 2017}
$$

• Challenge our current understanding of superfluid state in NS interior

Precession of NSs: why we study it

2. Magnetic deformation due to strong internal magnetic field

$$
\epsilon_{\rm B} \approx \kappa \frac{B^2 R^3}{GM^2/R} = 1.9 \times 10^{-6} \kappa B_{15}^2
$$

Lander & Jones, MNRAS, 2009; Lasky & Melatos, PRD, 2014; Zanazzi & Lai, MNRAS, 2015

Credit: Braithwaite

Can be prolate or oblate, determined by the strength and configuration of magnetic field

Magnetar 4U 0142+61: hard X-ray phase modulations $(\pm 0.7 \text{ s})$

 $P_f \sim 15 h$ $\epsilon \sim 10^{-4}$!

Indication of strong internal toroidal magnetic field in the order of 10^{16} G

Information on NS internal magnetic field configuration and strength

Magnetars as precession candidates

Why we consider magnetars?

Large deformation due to strong internal magnetic field

Haskell et al., MNRAS, 2008; Mastrano et al., MNRAS, 2015

$$
\epsilon_{\rm B} \approx \kappa \frac{B^2 R^3}{GM^2/R} = 1.9 \times 10^{-6} \kappa B_{15}^2
$$

• They are young and very active, energetic process may excite wobble angle and precession

Levin et al., ApJ, 2020

Precession dynamics of magnetars: free

• Dynamical evolution can be obtained from the Euler equations

$$
\dot{\boldsymbol{L}} + \boldsymbol{\omega} \times \boldsymbol{L} = 0
$$

• General **triaxial** case and **rigid** precession, **analytical** solution

$$
\epsilon \equiv \frac{I_3 - I_1}{I_1}, \quad \delta \equiv \frac{I_3 (I_2 - I_1)}{I_1 (I_3 - I_2)}, \quad \theta \equiv \arccos \frac{L_3}{L}
$$

$$
\hat{L}_1 = \sin \theta_0 \text{cn} \left(\omega_p t, m \right)
$$

$$
\hat{L}_2 = \sin \theta_0 \sqrt{1 + \delta} \text{sn} \left(\omega_p t, m \right)
$$

$$
\hat{L}_3 = \cos \theta_0 \text{dn} \left(\omega_p t, m \right)
$$

- Special biaxial case: degenerates into simple harmonic functions
- Jacobi elliptic function is not 2π periodic

Precession dynamics of magnetars: forced

Credit: NASA • Large magnetic field indicates large electromagnetic torques

The near-field torque

The far-field torque (spindown torque)

$$
N_{\rm m} = \frac{3\omega^2\mu^2}{5Rc^2} (\hat{\boldsymbol{\omega}} \cdot \hat{\boldsymbol{\mu}})(\hat{\boldsymbol{\omega}} \times \hat{\boldsymbol{\mu}})
$$

Does not dissipate energy, but change the geometry

$$
\tau_{\rm m} = \frac{5R I_0 c^2}{3\omega \mu^2} = 3.36 M_{1.4} R_6 P_1 B_{14}^{-2} \text{ yr}
$$

*ω μ N*rad *α N*rad = *k*1*μ*² *ω*3 *^c*³ [(*ω* ̂⋅ *μ*)̂ *μ* ̂− *k*2*ω* ̂] *k* , vacuum torque ² = 1 *k* , plasma-filled torque ² = 2

Dissipates energy (spindown) and change the geometry

$$
\tau_{\text{rad}} = \frac{3c^3 I_0}{2\mu^2 \omega^2} = 1.44 \times 10^4 M_{1.4} P_1^2 B_{14}^{-2} \text{ yr}
$$

Two kinds of torques

$$
\tau_{\rm f} \sim \frac{P}{\epsilon} = 1.58 P_5 \epsilon_7^{-1} \, \text{yr}
$$

• For magnetars:

$$
\tau_{\rm f} \, , \, \tau_{\rm m} \, \ll \tau_{\rm rad}
$$

- **• The forced precession under the far-field torque can be obtained by perturbation method**
- In some cases, $\tau_f \sim \tau_m$, **couples to precession on precession timescale, cannot use perturbation**

Precession dynamics under the near-field torque

$$
\dot{\mathbf{L}} + \boldsymbol{\omega} \times \mathbf{L} = \frac{3\omega^2 \mu^2}{5Rc^2} (\hat{\boldsymbol{\omega}} \cdot \hat{\boldsymbol{\mu}}) (\hat{\boldsymbol{\omega}} \times \hat{\boldsymbol{\mu}})
$$

Originating from the MoI of EM field itself

$$
\dot{L} + \omega \times (L + \omega \cdot M) = 0
$$

$$
M = -I_0 \epsilon_m (\hat{\mu} \otimes \hat{\mu})
$$

$$
\epsilon_m = \frac{3\mu^2}{5I_0 R c^2} = 1.5 \times 10^{-9} M_{1.4}^{-1} B_{14}^2 R_6^3
$$

Transform into an effective free precession problem

$$
\dot{\boldsymbol{L}}_{\rm eff} + \boldsymbol{\omega} \times \boldsymbol{L}_{\rm eff} = 0
$$

 $P = 5 \text{ s}, \ \epsilon = 10^{-7}, \ \delta = 1, \ \theta_0 = 15^{\degree}, \ T_{\text{eff}} = 2.59 \text{ yr}$

Precession dynamics under the far-field torque

$$
\dot{\boldsymbol{L}} + \boldsymbol{\omega} \times \boldsymbol{L} = \frac{k_1 \mu^2 \omega^3}{c^3} \left[(\hat{\boldsymbol{\omega}} \cdot \hat{\boldsymbol{\mu}}) \hat{\boldsymbol{\mu}} - k_2 \hat{\boldsymbol{\omega}} \right]
$$

Taking the dot product

 $l = -\frac{3k_1}{2}$

$$
\dot{L} = N_{\text{rad}}^{\parallel} \cdot \hat{L} \simeq \frac{3k_1 I_0 \omega}{2\tau_{\text{rad}}} \left(\cos^2 \alpha - k_2 \right)
$$

t

cos2 *α*d*t*

)

0

$$
\omega(t) = \omega_0(1 + \ell(t))
$$

 $\frac{1}{2\tau_{\text{rad}}}$ $\left(k_2t-\right)$

 $k_2 = 1$, vacuum torque

 $k_2 = 2$, plasma-filled torque

Can be integrated analytically, α changes periodically, leading to periodical modulations on the angular frequency

Precession dynamics under the far-field torque

Precession modulates emissions—key points

Precession geometry in inertial frame

• The rotation phase Φ are different in different precession epoch

Phase modulations and timing residuals

• The angle α changes periodically with precession period $P_{\rm f}$

$$
\left[\left. \left| \theta_{\min} - \chi \right|, \left. \left| \theta_{\max} - \chi \right| \right. \right] \right]
$$

Swing of the emission region

Modulate flux, profile, polarization,…

X-ray pulsations of magnetars

• Some magnetars are **persistent X-ray sources** with a luminosity $L_{\rm x} = 10^{33} - 10^{36} \text{ erg s}^{-1}$

- Show clear X-ray pulsations due to their spin
- Timing has been obtained for most magnetars

Timing residuals from X-ray pulsations

$$
\Delta P_{\text{fp}} = \left(\frac{\text{d}\arctan \phi_1}{\text{d}\tau} - \frac{\sqrt{1 + \delta} / \cos \theta_0}{1 + \delta \sin^2 \tau}\right) \frac{\epsilon \cos \theta_0 P_0}{\sqrt{1 + \delta}} \qquad \Delta P_{\text{sd}} = -\frac{3k_1 P_0}{2\tau_{\text{rad}}} \left(\int_0^t \cos^2 \omega dt - \left(\int_0^t \cos^2 \omega dt \right) t \right)
$$
\n
$$
\tau = \omega_p t + \psi_0
$$
\n
$$
\approx \frac{3k_1 P_0}{2\tau_{\text{rad}} \omega_p} \left\{ a_1 \text{cn}\tau + a_2 \text{sn}\tau + a_3 \text{dn}\tau \right\}
$$
\n
$$
\tan \phi_1 = \frac{\hat{\mu}_1 \cos \psi - \hat{\mu}_2 \sin \psi}{\hat{\mu}_2 \cos \theta \cos \psi - \hat{\mu}_3 \sin \theta + \hat{\mu}_1 \cos \theta \sin \psi} + a_4 \left[\frac{E(m)}{K(m)} \tau - E(\text{am}\tau) \right] + B_c \right\}
$$
\n1. Geometric term\n2. Spindown term\n3.
$$
\frac{\Delta P_{\text{fp}}}{P} = \text{Geometric factor} \times \frac{P}{\tau_f}
$$
\n
$$
\frac{\Delta P_{\text{sd}}}{P} = \text{Geometric factor} \times \frac{\tau_f}{\tau_f}
$$

P

= Geometric factor ×

*τ*rad

Timing residuals from X-ray pulsations

X-ray emission from magnetars

• Some magnetars are **persistent X-ray sources** with a luminosity $L_x = 10^{33} - 10^{36}$ erg s⁻¹

X-ray spectra of 4U 0142+61

- Show clear X-ray pulsations due to their spin
- Soft component at $0.5 10 \,\text{keV}$:
	- 1. Well described by either multiple blackbodies or a blackbody plus power law
	- 2. Thought as thermal emission from magnetar surface, reprocessed by the magnetosphere
- The emission is highly polarized according current emission models

Polarized X-ray from magnetized NSs

Credit: NASA **1. Surface emission from magnetar is thought as highly polarized (up to 100%)**

Lai & Ho, PRL, 2003 Gnedin & Sunyaev, A&A, 1974 Pavlov & Zavlin, 2000 Heyl et al., PRD, 2003

- O mode X -mode **E** nearly \perp **k** − **B** plane **E** nearly in the \bf{k} − **B** plane
- The two modes have different opacities (scattering, absorption):

$$
\kappa_{\rm O} \sim \kappa_{(B=0)} \quad \kappa_{\rm X} \sim \kappa_{(B=0)} \left(\omega/\omega_{ce}\right)^2
$$

• X-mode photons are the main carrier of X-ray flux (two photospheres), the emergent radiation is highly polarized

Thermal X-ray polarization from magnetized NSs

Credit: NASA **2. Including vacuum polarization in strong B**

Dielectric tensor of magnetized plasma including vacuum polarization

$$
\varepsilon = I + \Delta \varepsilon^{(\text{plasma})} + \Delta \varepsilon^{(\text{vac})}
$$

Vacuum resonance and mode conversion

$$
\Delta \boldsymbol{\varepsilon}^{\text{(plasma)}} + \Delta \boldsymbol{\varepsilon}^{\text{(vac)}} \sim 0
$$
\ndepends on $-\left(\omega_p/\omega\right)^2 \propto \rho/E^2$ \n
$$
\text{atmosphere}
$$
\nlight propagation

Lai & Ho, PRL, 2003; Adelsberg & Lai, MNRAS, 2006

NS surface

Thermal X-ray emission model

 $\hat{\boldsymbol{\ell}}_1^{\text{p}}$ 1

=

 $(\hat{k} \times \hat{\mu}) \times \hat{k}$

 $\cos \Psi = \hat{e}_1^{\mathrm{p}} \cdot \hat{i} =$

 $\sin \Psi = \hat{e}_1^{\mathrm{p}}$

 $\frac{\hat{e}^{\mu} - \hat{e}^{\mu}}{\sin \Theta}$, \hat{e}^{ρ}_{2}

2

 $P_1 \cdot \hat{j} = -\frac{\sin \alpha \sin \Phi}{\sin \Theta}$

sin Θ

 $=\frac{\hat{k}\times\hat{\mu}}{\hat{k}}$

sin Θ

sin Θ

• Propagation of the polarized emission to the observer

1. bending of light and gravitational redshift

$$
F_{\rm I} = F_{\rm O} + F_{\rm X}
$$

2. Polarization state evolution: QED effect

Not parallel transport, but evolve adiabatically along the direction of the magnetic field up to the "polarization limiting radius" r_{pl}

$$
\hat{e}_{2}^{\text{p}} = \frac{\hat{k} \times \hat{\mu}}{\sin \Theta}
$$
\n
$$
F_{\text{Q}} = F_{\text{I}} \Pi_{\text{em}} \cos 2\Psi \left(r_{\text{pl}} \right)
$$
\n
$$
\sin \iota \cos \alpha - \cos \iota \sin \alpha \cos \Phi
$$
\n
$$
\sin \Theta
$$
\n
$$
\Pi_{\text{L}} = \frac{\left(F_{\text{Q}}^{2} + F_{\text{U}}^{2} \right)^{1/2}}{F_{\text{I}}} = \left| \Pi_{\text{em}} \right|
$$

Modulations on phase-resolved Stokes parameters

Most sensitive to phase near 0°

Modulations on phase-averaged Stokes parameters

Modulations on polarized radio emissions

Radio emission

(1) Detected in transient magnetars, the emission is also transient (associated with X-ray bursts) Kaspi & Beloborodov, ARAA, 2017

- (2) Bright, show large pulse-to-pulse variability and flat spectrum
- (3) **Highly linearly polarized, with polarization fractions of 60%-100%**
	- The direction of polarization (PA) reflects the emission geometry $(\alpha$ and $i)$
	- The PA can be fitted with the rotating vector model (RVM) **in some cases**

Swift J1818.0–1607

Modulations on polarized radio emissions

Neglected near-field torque

$$
(\epsilon = 10^{-7}, B = 10^{14} \,\mathrm{G})
$$

Large near-field torque $(e = 10^{-7}, B = 5 \times 10^{14} \text{ G})$

Summary

• A analytical precession model for magnetars including complex deformation and EM torques

- Modelling the timing residuals (searching template)
- Detect precession with X-ray/radio emission is promising (Fast, IXPE, eXTP)
- More work needs to be done on timing searches and emission modelling