2022 FPS 11 Aug.3-5, 2022, Xiangtan University

Heating and Cooling of Accreting Neutron Stars as a Probe of Neutron Star Interiors

Helei Liu (刘荷蕾)

School of Physical Science and Technology, Xinjiang University 2022.8.5

Today's Contents

- Background
	- Transiently accreting neutron stars
	- Heating and cooling of accreting neutron stars
- Elucidation of physics inside neutron stars from their cooling observations
	- EoS dependence of thermal evolution of accreting NS
	- Effect of neutrino heating on thermal evolution of accreting NS
- The mass and radius dependent of X-ray burst
- Conclusions & Future Perspective

Basic neutron star structure

Newton, 2013, Nat Phys

Typical value M_{NS} ~1.4 M_{\odot} , R_{NS} ~ 10 km

Core density >nuclear density

Possible exotic particles???

- No terrestrial experiments seem possible at such high densities and low temperature ($\ll 10^{10}$ K)
- Many equation of states (EoSs) for NS core matter have been developed

How to constrain EoS?

Many ways, but we consider heating and cooling of transiently accreting neutron stars and X-ray burst as the tools.

Transiently accreting neutron star

Low-mass x-ray binaries (LMXBs)

- $M_{\rm{donar}} \lesssim 1 M_{\odot}$
- Orbital period: $minutes \sim$ days
- Old system (t≳ 1Gyr)
- Weak magnetic field (B~ 10^7 to 10^9 G)
- Roche-Lobe Overflow

Soft x-ray transients (SXRTs)

- **Active phase**
	- accretion rate $~10^{-10}$ -10⁻⁸ M_o yr⁻¹
	- Lx \sim 10³⁶⁻³⁹ erg/s
	- Weeks to months to years
- **Quiescent phase** (requires sensitive X-ray telescope)
	- little accretion
	- $Lx \sim 10^{34}$ erg/s

(NASA website)

Accreting NSs as nuclear physics laboratories

N Chamel, P Haensel . Living Rev. Relativity 2008

• **compression/heating of the envelope**

thermonuclear burning of light elements

Type I X-ray bursts and superbursts while accreting

• **compression/heating of the crust**

e-captures, n-emission, pycnonuclear reactions

Cooling in quiescence

"Deep crustal heating": $1~2$ MeV/nuc

$$
Q_i = 6.03 \dot{M}_{-10} \frac{q_i}{\text{MeV}} 10^{33} \text{ erg s}^{-1}
$$

Grindlay, 1976, ApJ

P. Haensel et al, 1990,2003,2008

Energy Sources in Accreting NS

- Outer physics of NS
	- Release of gravitation
	- Nuclear burning 3α reaction→HCNO cycle (Wallance & Woosley 1981) \rightarrow α p process \rightarrow rp process (Woosley & Weaver 1981,84) →SnSbTe cycle (Schatz+2001)
- Inner physics of NS
	- Crust heating (Haensel & Zdnick 90,03,08)
	- Shallow heating (Deibel, 2016)
	- vemission (slow+Fast cooling)
	- EOS properties

YCE-RAY $log_{10} \rho_B$ [g/cc] AMANTEL **THATASH ON SON** OUTER CREEK *SUPERFLUID*

Quiescent luminosity and burst phenomenon is related to not only outside but also inside physics of NS \Rightarrow

Luminosity in quiescence of soft X-ray transients

Steady state

Depend on**:**

- the rate of neutrino cooling
- superfluidity
- Equation of state
- Surface composition

Wijnands et al, 2017

Han & steiner, 2017 Potekhin, et al, 2020

Luminosity in quiescence of soft X-ray transients

Wijnands et al, 2017

- Magnitude: 0-17 MeV/u
- Depth: $10^8 10^{10}$ g cm⁻²
- Physics origin: unknown

Crust cooling additional shallow heat source?

Parikh, et al, 2017

Luminosity in quiescence of soft X-ray transients

RX J0812.4-3114

• Low accretion rate: $5.8 \times 10^{-12} M_{\odot}$ yr⁻¹

• High luminosity: $L_X \approx 1.6 \times 10^{33}$ erg s⁻¹

Possible explanation:

- RX J0812.4-3114 contains a relatively low-mass NS with minimum cooling
- The system may be young enough that the NS has not fully cooled from the supernova explosion
- Additional heating?

Zhao, et al, 2019

Effects of equation of state on type-I x-ray burst

• Previous studies about multi-zone modeling cover with accreted layer, giving boundary conditions on NS crust, but don't consider some physics of interior NS

• Dohi, et al. studied X-ray bursts using a general relativistic stellarevolution code with several EoSs

Effects of equation of state on type-I x-ray burst

Dohi,2021,ApJ

• Previous studies about multi-zone modeling cover with accreted layer, giving boundary conditions on NS crust, but don't consider some physics of interior NS

• M increases, the time interval becomes larger, the peak luminosity becomes higher

Basic Equations

The general relativistic evolutionary equations:

$$
\frac{\partial M_{tr}}{\partial r} = 4\pi r^2 \rho ,
$$

\n
$$
\frac{\partial P}{\partial r} = -\frac{GM_{tr}\rho}{r^2} \left(1 + \frac{P}{\rho c^2}\right) \left(1 + \frac{4\pi r^3 P}{M_{tr}c^2}\right) V^2 ,
$$

\n
$$
\frac{\partial (L_r e^{2\phi/c^2})}{\partial M_r} = e^{2\phi/c^2} (\varepsilon_n - \varepsilon_\nu + \varepsilon_g) ,
$$

\n
$$
\frac{\partial \ln T}{\partial \ln P} = \nabla_{\text{rad}} ,
$$

\n
$$
\frac{\partial \phi}{\partial M_{tr}} = \frac{G(M_{tr} + 4\pi r^3 P/c^2)}{4\pi r^4 \rho} V^2 ,
$$

where

$$
\frac{\partial M_{tr}}{\partial M_r} = \frac{\rho}{\rho_0} V^{-1}, \ V \equiv \left(1 - \frac{2GM_{tr}}{c^2r}\right)^{-1/2}.
$$

Fujimoto et al, 1984; Thorne et al, 1977;

Physics input:

- Equation of state
- Neutrino emission
	- Standard cooling
		- Modified URCA
		- Bremsstrahlung process
	- fast cooling
		- Direct URCA
		- Pion condensation process

 \bullet ...

- PBF
- heating
	- deep crustal heating
	- shallow heating ...

EoS dependence of the cooling curves

Dohi, Hashimoto, 2019

- \geqslant 2 M_{\odot} NS observation
- ➢ GW170817
- \triangleright Low mass X-ray binary observations

DU process of Togashi EoS is prohibited

Any other fast cooling processes work in NS? (exotic particles such as hyperons, pions, kaons, and quarks)

EoS+pion condensation

Effects of pion condensation

- ➢ Soften the EoSs
- ➢ Strong pion neutrino emission

Quiescent Luminosity of accreting NS

Liu & Dohi, PRD, 2021

Heating curves with TM1, Togashi+ π , TM1e+ π located too low, superfluidity is needed

Quiescent Luminosity of accreting NS

Liu & Dohi, PRD, 2021

Neutron ${}^{1}S_{0}$: CLS Proton ${}^{1}S_{0}$: CCDK

EEHO for Neutron ${}^{3}P_{2}$ is too weak to explain some hot observations

Quiescent Luminosity of accreting NS

Strong neutron ${}^{3}P_{2}$ superfluidity TTav can fit cooling observations

Crustal heating by neutrinos from the surface of accreting neutron stars

Charged Pion Production from infalling matter

 \overline{T}

Kinetic energy:

$$
=m_0c^2\bigg(\frac{1}{\sqrt{1-R_\text{S}/R}}-1\bigg)
$$

Bildsten, et al., 1992

Fattoyev, et al, 2018

If $T_{\rm kin} \gtrsim 290$ MeV (pion production threshold), it could occur near the surface due to free-fall material

Crustal heating by neutrinos from the surface of accreting neutron stars

⚫ After pion production

•
$$
\pi^0 \rightarrow \gamma + \gamma
$$

\n• $\pi^+ \rightarrow \mu^+ + \nu_\mu, \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$
\n• $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu, \mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

$$
E_{\nu_{\mu}} = 29.8 \text{ MeV}, E_{\nu_e} = 33.3 \text{ MeV}, E_{\overline{\nu}_{\mu}} = 37.7 \text{ MeV}
$$

from neutrino energy spectrum

- Then, assuming the probability 50% that neutrinos move into the crust , the total carrying energy is:
- For neutrino transport, all neutrinos are assumed to eventually deposit in the crust

 $q_{\nu} \approx 0.5 \left(E_{\nu_{\mu}} + E_{\nu_{e}} + E_{\overline{\nu}_{\mu}} \right) N_{\pi^{+}}$ =50.4 MeV N_{π^+}

Does the pion production affect quiescent luminosity of transiently accreting neutron stars?

Estimation of q_v

- The pion production obtained from the IBUU transport model
- We consider α -Fe collision

$$
q_{\nu} \approx 0.5 \left(E_{\nu_{\mu}} + E_{\nu_{e}} + E_{\overline{\nu}_{\mu}} \right) \left(N_{\pi^{+}} + N_{\pi^{-}} \right)
$$

= 50.4 MeV $\left(N_{\pi^{+}} + N_{\pi^{-}} \right)$

- ➢ Decelerated by radiative pressure
- \triangleright free-fall condition
- ➢ Electromagnetic acceleration

Quiescent luminosities of SXTs with neutrino heating

- $q_v = 0 1$ MeV/u for $1.4 M_{\odot}$
- $q_v = 0 6$ MeV/u for $2.0 M_{\odot}$
- SAX J1808.4-3658 (low accretion rate, high luminosity)can be explained with a $2M_{\odot}$ neutron star
- The observation on cold sources can still be explained with neutrino heating

Liu, et al, 2021, PRD

Mass and radius dependence of Type I x-ray burst

Large radius models get higher luminosity **Higher mass models get higher luminosity**

EoS dependence of mHz Qpo

Summary & future work plan

- ✓ Studying the cooling and heating of accreting neutron stars in quiescence
	- EoSs dependence
		- Direct URCA threshold
		- superfluid
	- Effect of neutrino heating
		- The observation on hot source such as SAX J1808.4-3658can be explained with a $2M_{\odot}$ neutron star under the condition that neutrino heating is considered
- Studying the mass and radius dependence of type I x-ray burst

Future work plan:

- ⚫ Studying the possible heating mechanism in the crust of accreting neutron stars
- ⚫ Studying the EoS dependence of crust cooling
- Studying the EoS dependence of type I x-ray burst and mHz QPO