### 2022 FPS 11 Aug.3-5, 2022, Xiangtan University



# Heating and Cooling of Accreting Neutron Stars as a Probe of Neutron Star Interiors

Helei Liu (刘荷蕃)

School of Physical Science and Technology, Xinjiang University 2022.8.5

## **Today's Contents**

- Background
  - Transiently accreting neutron stars
  - Heating and cooling of accreting neutron stars
- Elucidation of physics inside neutron stars from their cooling observations
  - EoS dependence of thermal evolution of accreting NS
  - Effect of neutrino heating on thermal evolution of accreting NS
- The mass and radius dependent of X-ray burst
- Conclusions & Future Perspective

## **Basic neutron star structure**



Newton, 2013, Nat Phys

Typical value  $M_{\rm NS} \sim 1.4 M_{\odot}$ ,  $R_{\rm NS} \sim 10$  km

Core density >nuclear density

Possible exotic particles???

- No terrestrial experiments seem possible at such high densities and low temperature ( $\ll 10^{10}$  K)
- Many equation of states (EoSs) for NS core matter have been developed

#### \*How to constrain EoS?\*

Many ways, but we consider <u>heating and</u> <u>cooling of transiently accreting neutron stars</u> <u>and X-ray burst as the tools.</u>

# Transiently accreting neutron star

Low-mass x-ray binaries (LMXBs)

- $M_{\rm donar} \lesssim 1 M_{\odot}$
- Orbital period: minites~days
- Old system (t $\gtrsim$  1Gyr)
- Weak magnetic field  $(B\sim 10^7 \text{to } 10^9 \text{ G})$
- Roche-Lobe Overflow

Soft x-ray transients (SXRTs)

- Active phase
  - accretion rate ~10<sup>-10</sup>-10<sup>-8</sup>  $M_{\odot}$  yr<sup>-1</sup>
  - $Lx \sim 10^{36-39} erg/s$
  - Weeks to months to years
- Quiescent phase (requires sensitive X-ray telescope)
  - little accretion
  - Lx~10<sup>34</sup> erg/s



(NASA website)

#### Accreting NSs as nuclear physics laboratories



N Chamel, P Haensel . Living Rev. Relativity 2008

 compression/heating of the envelope

thermonuclear burning of light elements

Type I X-ray bursts and superbursts while accreting



#### compression/heating of the crust

e-captures, n-emission, pycnonuclear reactions

Cooling in quiescence

"Deep crustal heating": 1~2 MeV/nuc

$$Q_i = 6.03 \dot{M}_{-10} \frac{q_i}{\text{MeV}} 10^{33} \text{ erg s}^{-1}$$

P. Haensel et al, 1990,2003,2008

Grindlay, 1976, ApJ

## **Energy Sources in Accreting NS**

- Outer physics of NS
  - Release of gravitation
  - Nuclear burning 3α reaction→HCNO cycle (Wallance & Woosley 1981) →αp process→rp process (Woosley & Weaver 1981,84) →SnSbTe cycle (Schatz+2001)
- Inner physics of NS
  - Crust heating (Haensel & Zdnick 90,03,08)
  - Shallow heating (Deibel, 2016)
  - v emission (slow+Fast cooling)
  - EOS properties



Quiescent luminosity and burst phenomenon is related to not only outside but also inside physics of NS

# Luminosity in quiescence of soft X-ray transients

#### Steady state



Depend On:

- the rate of neutrino cooling
- superfluidity
- Equation of state
- Surface composition





Wijnands et al, 2017

Han & steiner, 2017

Potekhin, et al, 2020

# Luminosity in quiescence of soft X-ray transients

**Crust cooling** 



Wijnands et al, 2017



- Magnitude: 0-17 MeV/u
- Depth: 10<sup>8</sup>-10<sup>10</sup> g cm<sup>-2</sup>
- Physics origin: unknown



#### additional shallow heat source?

Parikh, et al, 2017

# Luminosity in quiescence of soft X-ray transients

#### RX J0812.4-3114



• Low accretion rate:  $5.8 \times 10^{-12} M_{\odot} \text{ yr}^{-1}$ 

• High luminosity:  $L_X \approx 1.6 \times 10^{33} \text{ erg s}^{-1}$ 

Possible explanation:

- RX Jo812.4-3114 contains a relatively low-mass NS with minimum cooling
- The system may be young enough that the NS has not fully cooled from the supernova explosion
- Additional heating?

Zhao, et al, 2019

#### Effects of equation of state on type-I x-ray burst







 Previous studies about multi-zone modeling cover with accreted layer, giving boundary conditions on NS crust, but don't consider some physics of interior NS • Dohi, et al. studied X-ray bursts using a general relativistic stellarevolution code with several EoSs

#### Effects of equation of state on type-I x-ray burst



Dohi,2021,ApJ



 Previous studies about multi-zone modeling cover with accreted layer, giving boundary conditions on NS crust, but don't consider some physics of interior NS • M increases, the time interval becomes larger, the peak luminosity becomes higher

# **Basic Equations**

The general relativistic evolutionary equations:

$$\begin{split} \frac{\partial M_{tr}}{\partial r} &= 4\pi r^2 \rho \ ,\\ \frac{\partial P}{\partial r} &= -\frac{GM_{tr}\rho}{r^2} \left(1 + \frac{P}{\rho c^2}\right) \left(1 + \frac{4\pi r^3 P}{M_{tr}c^2}\right) V^2 \ ,\\ \frac{\partial (L_r e^{2\phi/c^2})}{\partial M_r} &= e^{2\phi/c^2} \left(\varepsilon_{\rm n} - \varepsilon_{\nu} + \varepsilon_{\rm g}\right) \ ,\\ \frac{\partial \ln T}{\partial \ln P} &= \nabla_{\rm rad} \ ,\\ \frac{\partial \phi}{\partial M_{tr}} &= \frac{G(M_{tr} + 4\pi r^3 P/c^2)}{4\pi r^4 \rho} V^2 \ , \end{split}$$

where

$$\frac{\partial M_{tr}}{\partial M_r} = \frac{\rho}{\rho_0} V^{-1}, \quad V \equiv \left(1 - \frac{2GM_{tr}}{c^2 r}\right)^{-1/2}.$$

Fujimoto et al, 1984; Thorne et al, 1977;

#### **Physics input:**

- Equation of state
- Neutrino emission
  - Standard cooling
    - Modified URCA
    - Bremsstrahlung process
  - fast cooling
    - Direct URCA
    - Pion condensation process

• ...

- PBF
- heating
  - deep crustal heating
  - shallow heating ...

### **EoS dependence of the cooling curves**





6.6

6.6

Dohi, Hashimoto, 2019

- ▶  $2M_{\odot}$  NS observation
- ➢ GW170817
- Low mass X-ray binary observations

DU process of Togashi EoS is prohibited

Any other fast cooling processes work in NS? (exotic particles such as hyperons, pions, kaons, and quarks )

## **EoS+pion condensation**



| EoS                      | Togashi | Togashi+π |
|--------------------------|---------|-----------|
| $M_{\rm max}(M_{\odot})$ | 2.21    | 2.09      |

Effects of pion condensation

- Soften the EoSs
- Strong pion neutrino emission



### **Quiescent Luminosity of accreting NS**



Liu & Dohi, PRD, 2021

Heating curves with TM1,Togashi+ $\pi$ , TM1e+ $\pi$ located too low, superfluidity is needed

| EOS                | LS220 | Togashi | TM1  | TM1e | $LS220 + \pi$ | Togashi $+\pi$ | $TM1 + \pi$ | TM1e + $\pi$ |
|--------------------|-------|---------|------|------|---------------|----------------|-------------|--------------|
| $M_{DU}/M_{\odot}$ | 1.35  |         | 0.77 | 2.06 | 0.67          | 0.30           | 0.98        | 0.66         |

#### **Quiescent Luminosity of accreting NS**



Liu & Dohi, PRD, 2021

Neutron  ${}^{1}S_{0}$ : CLS Proton  ${}^{1}S_{0}$ : CCDK

EEHO for Neutron  ${}^{3}P_{2}$  is too weak to explain some hot observations

#### **Quiescent Luminosity of accreting NS**





Strong neutron  ${}^{3}P_{2}$ superfluidity TTav can fit cooling observations

# Crustal heating by neutrinos from the surface of accreting neutron stars

Charged Pion Production from infalling matter

T

Kinetic energy:

$$= m_0 c^2 \left(\frac{1}{\sqrt{1 - R_{\rm S}/R}} - 1\right)$$

Bildsten, et al., 1992

| Model        | $R_{14}$ (km) | $T_{14}$ (MeV) | $R_{20}$ (km) | <i>T</i> <sub>20</sub> (MeV) |
|--------------|---------------|----------------|---------------|------------------------------|
| FSU2 (soft)  | 12.89         | 200.5          | 12.03         | 377.2                        |
| FSU2 (stiff) | 14.10         | 178.0          | 12.95         | 334.2                        |
| HLPS (soft)  | 9.95          | 289.5          | 9.68          | 565.2                        |
| HLPS (stiff) | 13.59         | 186.8          | 14.14         | 291.6                        |

Fattoyev, et al, 2018



If  $T_{\text{kin}} \gtrsim 290$  MeV (pion production threshold), it could occur near the surface due to free-fall material

# Crustal heating by neutrinos from the surface of accreting neutron stars

• After pion production

• 
$$\pi^0 \rightarrow \gamma + \gamma$$
  
•  $\pi^+ \rightarrow \mu^+ + \nu_{\mu}, \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu}$   
•  $\pi^- \rightarrow \mu^- + \bar{\nu}, \mu^- \rightarrow e^- + \bar{\nu}, \mu^- + \bar{\nu}_{\mu}$ 

• 
$$\pi^- \rightarrow \mu^- + \bar{\nu}_\mu, \mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$$

$$E_{\nu_{\mu}} = 29.8$$
 MeV,  $E_{\nu_{e}} = 33.3$  MeV,  $E_{\overline{\nu}_{\mu}} = 37.7$  MeV from neutrino energy spectrum

- Then, assuming the probability 50% that neutrinos move into the crust , the total carrying energy is:
- For neutrino transport, all neutrinos are assumed to eventually deposit in the crust



$$\begin{split} q_\nu &\approx 0.5 \left( E_{\nu_\mu} + E_{\nu_e} + E_{\overline{\nu}_\mu} \right) N_{\pi^+} \\ = &50.4 \ \text{MeV} N_{\pi^+} \end{split}$$

Does the pion production affect quiescent luminosity of transiently accreting neutron stars?

# Estimation of $q_{\nu}$

- The pion production obtained from the IBUU transport model
- We consider  $\alpha$ -Fe collision



| E/A (MeV) | $N_{\pi^{-}}$ | $N_{\pi^+}$ | $q_{\nu}(\text{MeV})$ |
|-----------|---------------|-------------|-----------------------|
| 300       | 0.012         | 0.011       | 1.16                  |
| 350       | 0.021         | 0.018       | 1.97                  |
| 400       | 0.029         | 0.028       | 2.87                  |
| 450       | 0.037         | 0.035       | 3.63                  |
| 500       | 0.048         | 0.043       | 4.59                  |
| 550       | 0.055         | 0.049       | 5.24                  |
| 600       | 0.071         | 0.059       | 6.55                  |

$$\begin{aligned} q_{\nu} &\approx 0.5 \left( E_{\nu_{\mu}} + E_{\nu_{e}} + E_{\overline{\nu}_{\mu}} \right) \left( N_{\pi^{+}} + N_{\pi^{-}} \right) \\ &= 50.4 \text{ MeV} \left( N_{\pi^{+}} + N_{\pi^{-}} \right) \end{aligned}$$

- Decelerated by radiative pressure
- ➢ free-fall condition
- Electromagnetic acceleration

#### **Quiescent luminosities of SXTs with neutrino heating**

| Model           | $R_{14}$ (km) | $T_{14}$ (MeV) | $R_{20}$ (km) | $T_{20}$ (MeV) |
|-----------------|---------------|----------------|---------------|----------------|
| Togashi         | 11.55         | 232.1          | 11.17         | 427.2          |
| Togashi + $\pi$ | 10.97         | 249.7          | 10.33         | 493.8          |
| BSK24           | 12.54         | 207.2          | 12.27         | 363.5          |

- $q_{\nu} = 0 1$  MeV/u for  $1.4 M_{\odot}$
- $q_{\nu} = 0 6$  MeV/u for 2.0 $M_{\odot}$
- SAX J1808.4-3658 (low accretion rate, high luminosity)can be explained with a  $2M_{\odot}$  neutron star
- The observation on cold sources can still be explained with neutrino heating



Liu, et al, 2021, PRD

## Mass and radius dependence of Type I x-ray burst





Large radius models get higher luminosity

Higher mass models get higher luminosity

# EoS dependence of mHz Qpo



# Summary & future work plan

- ✓ Studying the cooling and heating of accreting neutron stars in quiescence
  - EoSs dependence
    - Direct URCA threshold
    - superfluid
  - Effect of neutrino heating
    - The observation on hot source such as SAX J1808.4-3658can be explained with a  $2M_{\odot}$  neutron star under the condition that neutrino heating is considered
- ✓ Studying the mass and radius dependence of type I x-ray burst

Future work plan:

- Studying the possible heating mechanism in the crust of accreting neutron stars
- Studying the EoS dependence of crust cooling
- Studying the EoS dependence of type I x-ray burst and mHz QPO