

White dwarf-White dwarf collisions in AGN disk via close encounters

Yan Luo

University of Science and Technology of China (USTC) Hefei 230027, Anhui, China

August 4, 2022

② Simulation Models and Initial Set up

2) Simulation Models and Initial Set up

Compact objects in AGN disks

Figure: Compact objects in AGN disks, Tagawa et al. 2020.

② Simulation Models and Initial Set up

3 Results

④ Conclusions

- A large population of WDs in AGNs;
- WDs align into AGN disks;
- WDs migrate in AGN disks and finally form restricted three-body systems;

Chaotic evolutions

The orbital separation $p = a_2 - a_1$. If

$$p \le p_{\rm c} = 2 \cdot 3^{1/6} \left(\frac{m_1 + m_2}{M}\right)^{1/3} = 2\sqrt{3}R_{\rm H},$$
 (1)

the orbits are unstable and chaotic, leading to close encounters.

Ejection

$$r_{\rm e} \sim 2 \frac{G(m_1 + m_2)}{v_{\rm orb}^2}.$$
 (2)

• Binary formation via GW emission

$$r_{\rm b} \equiv 3.48 \left(\frac{m_1 m_2}{(m_1 + m_2)^2}\right)^{\frac{2}{7}} \left(\frac{m_1 + m_2}{M}\right)^{\frac{10}{21}} \left(\frac{GM/c^2}{a_1}\right)^{\frac{5}{7}} R_{\rm H}.$$
 (3)

Collision

$$r_{\rm c} = r_1 + r_2.$$
 (4)

10

Assume
$$M=10^6 M_{\odot}$$
, $m_1=m_2=0.6 M_{\odot}$, $a_1=100 r_{
m g}$

 $r_{\rm c} \approx 1.5 \times 10^7 {\rm m}$ $r_{\rm b} \approx 1.76 \times 10^5 {\rm m}$ $r_{\rm e} \approx 3.6 \times 10^5 {\rm m}$ (5)

 $r_{\rm c} \gg r_{\rm b}, r_{\rm e}$

The two WDs will collide together before they form a binary or one of the WD be ejected.

- WD mass $m_1 = m_2 = 0.6 M_{\odot}$, initial orbital separation $p = a_1 a_2$.
- Initial eccentricities $e_1 = 0$ and $e_2 = 10^{-5}$.
- Initial orbital phase difference uniform distribute in $[0, 2\pi]$.
- N-body units $G = M = a_1 = 1$, $P_1 = 2\pi$.
- REBOUND, $10^5 P_1$.
- Three different initial parameters
 - Initial orbital separation
 - Relative orbital inclination
 - Mass of central SMBH

Initial set ups

name	М	m_1, m_2	a_1	$p/R_{\rm H}$	i_1, i_2	N
Run1	1	6×10^{-7}	1	1.0	0	1000
Run2	1	6×10^{-7}	1	1.5	0	1000
Run3	1	6×10^{-7}	1	2.0	0	1000
Run4	1	6×10^{-7}	1	2.5	0	1000
Run5	1	6×10^{-7}	1	3.0	0	1000
Run6	1	6×10^{-7}	1	3.5	0	1000
Run7	1	6×10^{-7}	1	[0.8,4]	0	4000
Run8	1	6×10^{-7}	1	3.0	$ i_1 - i_2 = 10^{-3} \frac{R_{\rm H}}{a_1}$	1000
Run9	1	6×10^{-7}	1	3.0	$ i_1 - i_2 = 10^{-2} \frac{R_{\rm H}}{a_1}$	1000
Run10	1	6×10^{-7}	1	3.0	$ i_1 - i_2 = 10^{-1} \frac{R_{\rm H}}{a_1}$	1000
Run11	1	6×10^{-7}	1	3.0	$ i_1 - i_2 = \frac{R_{\rm H}}{a_1}$	1000
Run12	1	6×10^{-8}	1	3.0	0	1000
Run13	1	6×10^{-9}	1	3.0	0	1000

White dwarf-White dwarf collisions in AGN disk via close encounters, August 4, 2022

Background

2 Simulation Models and Initial Set up

④ Conclusions

Closest separation of different p

Figure: Closest separation in $10^5 P_1$ as a function of time. The red dot lines correspond to $\Delta r = p$. The red dash lines correspond to the close encounter separation.

WD-WD collision fraction

13/

Random initial orbital separation (Run

1 collision fraction $a_1 = 10^2 r$ 0.5 a, = 10⁴ 0 10⁻² closest separation $\Delta r/a_1$ 10-10⁻⁶ 10⁻⁸ 1 1.5 2 2.5 3 3.5 p/R_H

中国斜学技术大学 University of Science and Technology of China

Horseshoe orbits and tadpole orbits

Yan Lu

orbital radius evolution for $p < 1.1 R_{\rm H}$

WD-WD collision as a function of time

1 $-a_1 = 10^2 r_g$ $-a_1 = 10^3 r_{\rm g}$ $-a_1 = 10^4 r_{\rm g}$ Cumulative WD-WD collision fraction $a_1 = 10^5 r_{\rm g}^{\circ}$ 0.8 0.6 0.4 0.2 0 10² 10³ 10⁴ 10⁵ t/P_1

中国神学技术大学 University of Science and Technology of China

Inclinations

Inclinations

Different central SMBH mass

The red dot line correspond to $62P_1$.

The number of BHs around the SMBH is $\sim 1 - 4 \times 10^4$.

As a reuslt, there should exist $\sim 2 \times 10^5$ WDs around the SMBH.

the WD-WD collision rate

$$\mathcal{R} = n_{\rm GN} \times f_{\rm AGN} \times \frac{N_{\rm WD} \times f_{\rm d} \times f_{\rm 3b} \times f_{\rm c}}{\tau_{\rm AGN}},$$

= 300 Gpc⁻³yr⁻¹ $\frac{n_{\rm WD}}{0.006 {\rm Mpc}^{-3}} \frac{N_{\rm WD}}{2 \times 10^5} \frac{f_{\rm AGN}}{0.1} \frac{f_{\rm d}}{0.1}$ (6)
 $\times \frac{f_{\rm 3b}}{0.25} \frac{f_{\rm c}}{1} \left(\frac{\tau}{10 {\rm Myr}}\right)^{-1}.$

Around 1% type Ia SNe rate.

Yan Luo

Background

2 Simulation Models and Initial Set up

3 Results

- WDs will collide rather than form binary in our restricted three-body system.
- The close encounter occur in most of our system for $1.1R_{\rm H}$
- The WD-WD collision fraction decrease as inclination increase.
- As the mass of central SMBH increase, WD-WD collision will decrease.
- The WD-WD collision rate is $300 {\rm Gpc}^{-3} {\rm yr}^{-1}$.