An Active Repeating FRB— A Fast Radio Burst Source at A Complex Magnetized site in a barred galaxy

Heng Xu(胥恒), hengxu@bao.ac.cn

Supervisor: Kejia Lee(李柯伽), kjlee@pku.edu.cn

Kavli institute for Astronomy and Astrophysics, Peking University National Astronomical Observatories, CAS

> 4, Aug. , 2022 FPS11, Xiangtan, Hunan

Collaborators: Jiarui Niu, Ping Chen, Kejia Lee*, Weiwei Zhu*, Subo Dong*, Bing Zhang*, Jinchen Jiang, Bojun Wang, Jiangwei Xu, Chunfeng Zhang, Hai Fu, Alex Filippenko, Eric Peng, et al.,

arXiv: 2111.11764, accepted by Nature

Fast Radio Burst

A Bright Millisecond Radio Burst of Extragalactic Origin

D. R. Lorimer,^{1,2}* M. Bailes,³ M. A. McLaughlin,^{1,2} D. J. Narkevic,¹ F. Crawford⁴

Pulsar surveys offer a rare opportunity to monitor the radio sky for impulsive burst-like events with millisecond durations. We analyzed archival survey data and found a 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3° from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the universe imply that the burst is less than 1 gigaparsec distant. No further bursts were seen in 90 hours of additional observations, which implies that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and, if detected, could serve as cosmological probes.

Lorimer et al., 2007

Galactic FRB, CHIME/FRB collaboration, 2020

- Repeating fast radio bursts(Spitler et al., 2012)
- FRB localization / hosts (Chatterjee et al., 2017; Heintz et al., 2020)
- Complex morphology (Hessels et al., 2019)
- Periodic activity (CHIME/FRB 2020; Cruces et al., 2021)
- FRB from Galactic magnetar(CHIME/FRB 2020; STARE2 2020)
- Bimodal distribution in energy (Li et al., 2021)

- High degree of linear polarization, Low degree of circular polarization, Flat polarization angle (PA) (Petroff et al., 2019), PA swing (Luo et al., 2020)
- FRB polarization was inconclusive.

FAST Observations to FRB 20201124A

• Triggered by the high activity alarm from CHIME (CHIME/FRB 2021, Atel)

Localization and Host Galaxy Morphology

- FAST 19-Beams receiver enable localization, which is consistent with later ENV observations (Nimmo et al., 2022).
- K'-band image with NIRC2 camera using the laser guide-star adoptive-optics (AO) system at the 10m Keck telescopes.
- A barred-spiral galaxy (like the Milky Way, MW)
- FRB source locates at a low stellar density, interarm region.

Host Galaxy Properties

- A metal-rich barred-spiral galaxy
- Galaxy stellar mass is half as massive as the MW
- The star-formation rate is twice of the MW
- Its metallicity is ~ twice solar abundance

Complex Morphology

 Similar complex morphology seen in other repeating FRBs, (e.g, FRB 121102, FRB 20180301A, FRB 20180916B)

Flux & Energy

- Pulses are wider than other repeating FRBs.
- Energy spans more than 3 magnitudes.
- Energy distribution different from FRB20121102A (Li et al., 2021).

Waiting Time & Periodic Searches

- Striking agreement with FRB20121102A in timescale of microstructures
- No obvious periodicity was found excepts for these artifacts caused by nearly evenly spaced observations.

Pulse Properties

- Highly variable activity
- Quenching in 74 hours
- Clustering feature
- Prominent degree of circular polarization (maximum 75%)
- Greatly varying rotational measure (RM) & very stable RM н
- No marked DM variation
- Flat energy distribution evolution

Intriguing RM Evolution

- RM variation: -889 ~ -365 rad/m², on ~10 days timescale: environment size ~0.6 AU (τ /10d)(v/100 km/s).
- Stable RM (dRM <9.1 rad/m^2) at the end of the active window (probably coincidence?, or environment origin).
- Such large RM fractional variation was seen in the Galactic Be star binary PSR B1259-63.
- RM doesn't show a secular monotonic decline with time—the central engine is not likely a young magnetar.

RM evolution in Repeating FRBs

- RM variation is common in repeating FRB sources evolving magnetized environment around repeating FRBs.
- RM variations are complex, could be different from source to source.

FRB 20180916B, Mckinven et al., 2022, arXiv

Oscillations in Polarizations

- PA swings, high degrees of circular polarization
- Oscillation structures of polarization as functions of wavelength: conversion between linear and circular polarization — polarization-dependent absorption or conversion, requires B>3(γ/10)^-2 Gauss.

Summary

- FRB 20201124A is one of the most active repeating FRBs; a large sample with polarization information.
- Quasi-random RM variations was observed in our observations.
- Very high degree of circular polarization (up to 75%) was discovered.
- We found oscillation structures in polarization, possibly due to polarization-dependent absorption or conversion.
- A complicated dynamically evolving, magnetized environment around FRB source.

	Polarization Angle	Circular Polarization	RM Evolution	Periodicity at ~ms,~day	Periodic Activity	Host Galaxy
20121102A	Flat	~0	monotonic decrease	No!	Probably	Irregular dwarf galaxy
20180301A	Flat+Swing	~0	Yes			Irregular?
20180916B	Flat	~0	Yes		Yes	Spiral Galaxy
20190520B	Flat	~10%	Yes			Dwarf Galaxy
20200120E	Flat	~0				M81 Globular
20201124A	Flat+Swing	Could be >70%	Random	No!	?	Barred spiral Galaxy

Thanks!

RM Fluctuations in Bursts

 RM fluctuations of ~10 rad/ m^2 is possibly due to intrinsic profile evolution or propagation effects

RM Index

