Testing the Theories of Gravitation with Pulsars — Progress of the FAST project

Speaker: Xueli Miao (缪雪丽)

Collaborators: Weiwei Zhu, Michael Kramer, Paulo Freire, Lijing Shao, Lingqi Meng, Yuan Mao, Norbert Wex, Jumei Yao, Chenchen Miao, Huangchen Hu, Yanjun Guo, Emannual Fonseca, David Champion, Chengming Zhang

FAST/Future Pulsar Symposium 12 Nanyang Henan, 2023.07.05

中国科学院国家天文会

NATIONAL ASTRONOMICAL OBSERVATORIES, CAS

Pulsar, stably spinning neutron stars (NSs), high magnetic field $(10^8 \text{ G} - 10^{15} \text{ G})$, high matter density $(\sim 10^{15} \,\text{g/cm}^3)$, high pressure $(\sim 10^{36} \,\text{erg/cm}^3)$

✤ In 1967, the first pulsar PSR B1919+21 was discovered (Hewish, et al., 1968)

术 In 1974, the first binary pulsar system PSR B1913+16 was discovered, indirectly proving the existence of gravitational wave radiation for the first time (Hulse, R. A., Taylor, J. H., 1975)

Pulsar, stably spinning neutron stars (NSs), high magnetic field $(10^8 \text{ G} - 10^{15} \text{ G})$, high matter density $(\sim 10^{15} \,\text{g/cm}^3)$, high pressure $(\sim 10^{36} \,\text{erg/cm}^3)$

✤ In 1967, the first pulsar PSR B1919+21 was discovered (Hewish, et al., 1968)

★ In 1974, the first binary pulsar system PSR B1913+16 was discovered, indirectly proving the existence of gravitational wave radiation for the first time (Hulse, R. A., Taylor, J. H., 1975)

More than 3000 pulsars have been detected, where 10% are binary pulsar system

Pulsar, stably spinning neutron stars (NSs), high magnetic field $(10^8 \text{ G} - 10^{15} \text{ G})$, high matter density $(\sim 10^{15} \,\text{g/cm}^3)$, high pressure $(\sim 10^{36} \,\text{erg/cm}^3)$

✤ In 1967, the first pulsar PSR B1919+21 was discovered (Hewish, et al., 1968)

✤ In 1974, the first binary pulsar system PSR B1913+16 was discovered, indirectly proving the existence of gravitational wave radiation for the first time (Hulse, R. A., Taylor, J. H., 1975)

More than 3000 pulsars have been detected, where **10%** are binary pulsar system

- \checkmark The equations of state of NSs
- ✓ Gravity tests
- ✓ Interstellar medium study
- ✓ Gravitational wave detection
- ✓ Planet physics

Pulsar, stably spinning neutron stars (NSs), high magnetic field $(10^8 \text{ G} - 10^{15} \text{ G})$, high matter density $(\sim 10^{15} \,\mathrm{g/cm^3})$, high pressure $(\sim 10^{36} \,\mathrm{erg/cm^3})$

✤ In 1967, the first pulsar PSR B1919+21 was discovered (Hewish, et al., 1968)

✤ In 1974, the first binary pulsar system PSR B1913+16 was discovered, indirectly proving the existence of gravitational wave radiation for the first time (Hulse, R. A., Taylor, J. H., 1975)

More than 3000 pulsars have been detected, where **10%** are binary pulsar system

✓ The equations of state of NSs ✓ Gravity tests

- ✓ Interstellar medium study
- ✓ Gravitational wave detection
- ✓ Planet physics

N. Wex. 2014 M. Kramer. 2017

Highly-dynamical strong-field regime

Radiation regime

(cm⁻²) curvature Maximum

N. Wex. 2014 M. Kramer. 2017

N. Wex. 2014 M. Kramer. 2017

2

(cm⁻²) curvature Maximum

2

(cm⁻²) curvature Maximum

Testing the Theories of Gravitation with Pulsars

Testing the Theories of Gravitation with Pulsars

PSR J2222-0137, spin period is 32.8 ms A recycled pulsar with a massive white dwarf (WD) companion in a 2.44-day orbit An edge-on orbit allows a highly precise measurement of the Shapiro delay

PSR J2222–0137 An edge-on orbit

 $1.319(4) M_{c}$

Green Bank Telescope (GBT) 350 MHz drift-scan pulsar survey

PSR J2222-0137

The most massive double degenerate binary pulsar is known in our Galaxy Guo et al. 2021

Orbital model	DDGR	DDK	DDK Bayesian grid
Weighted residual rms (μ s)	2.759	2.772	
χ^2	10629.32	10627.89	
Reduced χ^2	0.9934	0.9934	
Orbital period, P _b (days)	2.44576436(2)	2.44576437(2)	
Projected semi-major axis, x (lt-s)	10.84802354(10)	10.8480235(2)	
Epoch of periastron, T_0 (MJD)	58002.019280(10)	58002.01928(1)	
Orbital eccentricity, e	0.00038092(1)	0.00038092(1)	
Longitude of periastron, ω (deg)	120.458(1)	120.458(2)	
Total mass, M_{tot} (M _{\odot})	3.135(19)		3.150(14)
Companion mass, M_c (M $_{\odot}$)	1.3153(56)	1.315(12)	1.3194(40)
Rate of advance of periastron, $\dot{\omega}$ (deg yr ⁻¹)		0.09605(48)	
Derivative of $P_{\rm b}$, $\dot{P}_{\rm b}$ (10 ⁻¹² s s ⁻¹)	0.2634(74) ^(a)	0.2509(76)	-
Derivative of x, \dot{x} (10 ⁻¹⁵ lt-s s ⁻¹)	-7.76(48)		
Orbital inclination (deg)	-	85.284(87)	85.269(41)
Position angle of line of nodes, Ω (deg)		191.3(7.0)	187.7(5.7)
Derived parameters			
Mass function, $f(M_{\odot})$	0.229142359(10)	0.229142358(12)	
Pulsar mass, M_p (M $_{\odot}$)	1.820(14)		1.831(10)

PSR J2222–0137 An edge-on orbit

 $1.319(4) M_{\odot}$

PSR J2222–0137: the ideal laboratory of scalar-tensor theories

* The largely different gravitational binding energies of the PSR-WD can provide a tighter constraint on the coupling parameter of the scalar field The pulsar mass $[1.831(10) M_{\odot}]$ places it in a NS mass range that had previously not been probed by precise tests of scalar-tensor theories, and it can play an important role to constrain the coupling parameter of Damour-Esposito-Farèse (DEF) gravity

PSR J2222–0137's observations by FAST

Orbital geometry

Spin

High signal-to-noise ratio observation provides an improved polarization study and reveals the existence of an **inter-pulse** first time

 $i = 85.27(4) \deg$ $\Omega = 189^{+19}_{-18} \deg$

 $\alpha = 91(1) \deg$ geometry $\beta = -7.2(6) \deg$

Guo et al. 2021

PSR J2222-0137 single pulse analysis

The pulse stack of 500 continuous pulses, and the time resolution is $64.06 \,\mu s$

Miao et al. submitted

27-day orbit with a white dwarf ($m_c = 0.26 M_{\odot}$)

Binary Pulsar

A binary pulsar has a massive $(m_p = 1.83 M_{\odot})$ millisecond pulsar in an eccentric (e = 0.13)

$\dot{P}_{b}^{\text{obs}} = \dot{P}_{b}^{\text{GR}} + \dot{P}_{b}^{\text{gal}} = -16.7 \pm 1.4 \times 10^{-12} \text{ s s}^{-1}$

Gravitational wave emission

27-day orbit with a white dwarf ($m_c = 0.26 M_{\odot}$)

Binary Pulsar

A binary pulsar has a massive $(m_p = 1.83 M_{\odot})$ millisecond pulsar in an eccentric (e = 0.13)

$\dot{P}_{b}^{\text{obs}} = \dot{P}_{b}^{\text{GR}} + \dot{P}_{b}^{\text{gal}} = -16.7 \pm 1.4 \times 10^{-12} \text{ s s}^{-1}$

Gravitational wave emission

27-day orbit with a white dwarf ($m_c = 0.26 M_{\odot}$)

Binary Pulsar

A binary pulsar has a massive $(m_p = 1.83 M_{\odot})$ millisecond pulsar in an eccentric (e = 0.13)

A significant **non-Galactic** component

Gravitational wave emission

27-day orbit with a white dwarf ($m_c = 0.26 M_{\odot}$)

Binary Pulsar

A binary pulsar has a massive $(m_p = 1.83 M_{\odot})$ millisecond pulsar in an eccentric (e = 0.13)

A suspected triple system?

$\dot{P}_{b}^{\text{obs}} = \dot{P}_{b}^{\text{GR}} + \dot{P}_{b}^{\text{ga}}$

Gravitational wave emission

PSR J1518+4904

Yuan et al., in preparation

The secondary spectrum Ds(1-s) $2V_{\rm eff}^2\cos\phi$

PSR J1518+4904

Yuan et al., in preparation

Yuan et al., in preparation

PSR J1518+4904

$i \sim 139^{\circ} \pm 1^{\circ}, \Omega \sim 9^{\circ} \pm 0.1^{\circ}$

Yuan et al., in preparation

PSR J2222–0137: Yanjun Gou et al., A&A, 2021 (Timing and GR tests) *Xueli Miao et al., submitted to MNRAS* (Single pulses analysis) PSR J1946+2052: Linggi Meng et al., in preparation (Measure geodetic precession) **PSR J1518+4904:** *Mao Yuan et al., in preparation* (Measure scintillation arc to get the geometry of orbit) **PSR J1946+3417** prepare to write the paper Other binary pulsars continue timing

Thank you !!!

