Phase-transition induced X-ray features in sGRB observations

宋仑 华中科技大学 指导老师 周恩平

2023年7月5日

宋仑 华中科技大学指导老师 周恩平 Phase-transition induced X-ray features in sGRB obse

Background: GRB afterglow and rotating star series

GRB afterglow plateau can be modeled as magnetic dipole radiation. The total energy and angular momentum evolves according to following equations (in geometric units)

$$\frac{dJ}{dt} = \frac{\mu^2 \omega^3}{6\pi} \qquad \qquad \frac{dM}{dt} = \frac{\mu^2 \omega^4}{6\pi}$$

If $J = I\omega$ and the rotation inertia I is constant, we find $\omega = \left(\frac{\mu^2 t}{3\pi I}\right)^{-\frac{1}{2}}$

Phase-transition induced X-ray features in sGRB obse

仑 华中科技大学指导老师 周恩³

Rotating Star Series

Uniformly rotating stars at equilibrium has 2 degrees of freedom.

$$M_0 = const.$$

1. $J_{t_0} \to \omega_{t_0} \to \left. \frac{dJ}{dt} \right|_{t_0} \to J_{t_1}$

2.
$$M_{t_0} \to \omega_{t_0} \to \left. \frac{dM}{dt} \right|_{t_0} \to M_{t_1}$$

Rotating Star Series

Uniformly rotating stars at equilibrium has 2 degrees of freedom.

 $dM = \omega dJ + \mu_c dM_0$ (Bardeen 1972)

 ρ_c can increase by a factor of two during spin down \rightarrow What if phase transition happens during spin down?

The EoS of hybrid star is as follows

$$e(p) = \begin{cases} e_{\text{hadronic}}(p) & p \le p_{\text{tr}} \\ e_{\text{hadronic}}(p_{\text{tr}}) + \Delta e + c_s^{-2}(p - p_{\text{tr}}) & p \ge p_{\text{tr}} \end{cases}$$

宋仑 华中科技大学指导老师 周恩平

Phase-transition induced X-ray features in sGRB obse

宋仑华中科技大学指导老师周恩平 Phase-transition induced X-ray features in sGRB obse

宋仑 华中科技大学指导老师 周恩平 Phase-transition induced X-ray features in sGRB obse

- $$\begin{split} M_0 &= 1.8 M_\odot \\ e_{tr} &= 5 \times 10^{14} g \cdot cm^{-3} \\ \Delta e &= 5 \times 10^{14} g \cdot cm^{-3} \\ \text{Two features} \end{split}$$
 - L increase by a factor of 3 5
 - slope deeper after phase transition

Parameters

- $\Delta \epsilon : \Delta L$
- ϵ_{tr}, ω_0 : t_{burst}

宋仑 华中科技大学指导老师 周恩平 Phase-transition induced X-ray features in sGRB obse

$$\begin{split} M_0 &= 1.8 M_\odot \\ e_{tr} &= 5 \times 10^{14} g \cdot cm^{-3} \\ \Delta e &= 5 \times 10^{14} g \cdot cm^{-3} \\ \text{Two features} \end{split}$$

- *L* increase by a factor of 3 5
- slope deeper after phase transition

Parameters

- $\Delta \epsilon$: ΔL
- ϵ_{tr}, ω_0 : t_{burst}

宋仓 华中科技大学指导老师 周恩平 Phase-transition induced X-ray features in sGRB obse

hadronic eos	e_{tr}	Δe	M_0	ω_1/ω_0	R_{1}/R_{0}	ΔM
NL3	5	5	1.8	1.41	0.884	0.0018
NL3	5	5	1.97	1.36	0.905	0.0023
NL3	6	4	2.65	1.19	0.94	0.0017
SK272	6	5.5	1.485	1.27	0.99	0.0016

* densities in $10^{14}g \cdot cm^{-3}$, masses in solar mass

- New born magnetars will experience large change in central density during spin down.
- The increase of central density could cause strong interaction phase transition.
- Phase transition could induce a shrink in the magnetar and a giant glitch in the angular velocity.
- The phase transition is potentially detectable in X ray light curve.