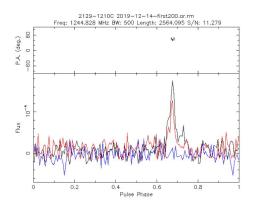


Pulsars profiles in gloublar clusters (GCs)

beautiful pulsar profiles based on FAST's high sensitivity

but...

lacking polarization profiles


M3 - 4+2 psr Li+

Hessels et al. 2007

Li et al. 2024

Why measuring polarization profiles?

Polarization profile of M13C Wu et al. 2023

FAST pulsar database: I. Polarization profiles of 682 pulsars

 $P. \; F. \; Wang^{1,2}, \; J. \; L. \; Han^{1,2}, \; J. \; Xu^{1,2}, \; C. \; Wang^{1,2}, \; Y. \; Yan^{1,2}, \; W. \; C. \; Jing^{1,2}, \; W. \; Q. \; Su^{1,2}, \; D. \; J. \; Zhou^{1,2}, \; and \; T. \; Wang^{1,2}$

- National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, China; pfwang@nao.cas.cn; hjl@nao.cas.cn
- School of Astronomy, University of Chinese Academy of Sciences, Beijing 100049, China;

Received 2022 XXX; accepted 2022 XXX

Abstract Pulsar polarization profiles are very basic database for understanding the emission processes in pulsar magnetosphere. After careful polarization calibration of the 19-beam L-band receiver and verification of beam-offset observation results, we obtain polarization profiles of 682 pulsars from observations by the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during the survey tests for the Galactic Plan Pulsar Snapshot (GPPS) survey and other normal FAST projects. Among them, polarization profiles of about 460 pulsars are observed for the first time. The profiles exhibit diverse features. Some pulsars have a polarization position angle curve with a good S-shaped swing, and some with orthogonal modes; some have components with highly linearly components or strong circularly polarized components; some have a very wide profile, coming from an aligned rotator, and some have an interpulse from a perpendicular rotator; some wide profiles are caused by interstellar scattering. We derive geometry parameters for 190 pulsars from the S-shaped position angle curves or with orthogonal modes. We find that the linear and circular polarization or the widths of pulse profiles have various frequency dependencies. Pulsars with large fraction of linear polarization are more likely to have a larce Edot.

- highly polarized
- studying faraday rotation measure
- · studying magnetic structure

WHY GC PULSARS?

- highly concentrated
- an blank work

Polarization measurements of Arecibo-sky pulsars: Faraday rotations and emission-beam analyses

Joanna Rankin, 1* Arun Venkataraman, 2 Joel M. Weisberg 3* and Alice P. Curtin 3,4,5*

¹Physics Department, University of Vermont, Burlington, VT 05405, USA
²Arecibo Observatory, bo. La Esperanza, P. P. Box 53995, Arecibo 0612, Puerto Rico

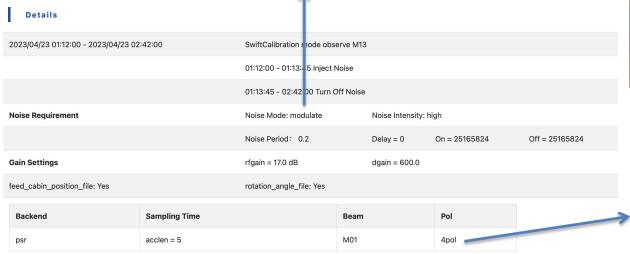
Arecibo Observatory, bo. La Esperanza, F. F. Box 33993, Arecibo 0012, Fuerto Rico
³ Department of Physics and Astronomy, Carleton College, Northfield, MN 55057, USA

Department of Physics and Astronomy, Carleton College, Northfield, MN 55057, US
Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada

5 Trottier Space Institute, McGill University, Montreal, QC H3A 247, Canada

5 Trottier Space Institute, McGill University, Montreal, QC H3A 2A7, Canada

Accepted 2023 July 5. Received 2023 June 20; in original form 2022 April 17


ABSTRACT

We present Farnday rotation measure (RM) values derived at L and P bands as well as some 60 Stokes parameter profiles, both determined from our long-standing Arecibo dual-frequency pulsar polarimetry programmes. Many of the RM measurements were carried out towards the inner Galaxy and the anticentre on pulsars with no previous determination, while others are remeasurements intended to confirm or improve the accuracy of existing values. Stokes-parameter profiles are displayed for the Se pulsars for which no meaningful Stokes profile at lower frequency is available and 4 without a high-frequency pair. This is a population that includes many distant pulsars in the inner Galaxy. A number of these polarized pulse profiles exhibit clear interstellar-scattering tails; none the less, we have attempted to interpret the associated emission-beam structures and to provide morphological classifications and ecometrical models where possible.

Key words: polarization - pulsars: general - ISM: magnetic fields - Galaxy: structure.

Measuring polarization profiles with FAST - observation

lecture by Zhou Dejiang, SPSS 2024

4 channels of polarization

Measuring polarization profiles with FAST - observation

NGC6402	NGC6402	NGC 6402	M 14	17:37:36.10	-03:14:45.3	264.4004167	-3.245916667			
NGC6402	观测日期	源名	赤经	赤纬	后端	观测模式	观测时长	noise mode	noise peirod	Pol
NGC6402	2024/3/15	M14	17:37:36	-03:14:45.3	psr	SwiftCalibration	6908		undisclosed	
NGC6402	2024/1/24	M14	17:37:36	-03:14:45.3	psr	SwiftCalibration	6908		undisclosed	
NGC6402	2023/11/24	M14	17:37:36	-03:14:45.3	psr	SwiftCalibration	6908		undisclosed	
NGC6402	2023/7/4	M14	17:37:36	-03:14:45.3	psr	Tracking	7665		undisclosed	
NGC6402	2023/7/1	M14	17:37:36	-03:14:45.3	psr	Tracking	7140		undisclosed	
NGC6402	2023/6/15	M14	17:37:36	-03:14:45.3	psr	Tracking	7140		undisclosed	
NGC6402	2023/4/28	M14	17:37:36	-03:14:45.3	psr	Tracking	71 0	-	-	
NGC6402	2023/4/23	M14	17:37:36	-03:14:45.3	psr	Tracking	71 0	-	-	
NGC6402	2023/2/10	M14	17:37:36	-03:14:45.3	psr	Tracking	71 0	-	-	
NGC6402	2022/11/16	M14	17:37:36	-03:14:45.3	psr	Tracking	71 0	-	-	
NGC6402	2022/11/14	M14	17:37:36	-03:14:45.3	psr	Tracking	71 0	-	-	
NGC6402	2022/11/12	M14	17:37:36	-03:14:45.3	psr	Tracking	7200	OII	_	
NGC6402	2022/11/8	M14	17:37:36	-03:14:45.3	psr	Tracking	7200	on	-	
NGC6402	2022/11/4	M14	17:37:36	-03:14:45.3	psr	Tracking	10800	on	-	
NGC6402	2022/10/31	M14	17:37:36	-03:14:45.3	psr	Tracking	10800	on	-	
NGC6402	2022/4/28	source_146	17:37:38	-03:14:34.4	psr	SnapShot	1260	-	-	
NGC6402	2022/1/17	M14	17:37:36	-03:14:45.30	psr	Tracking	10800	-	-	
NGC6402	2021/12/6	M14	17:37:36	-03:14:45.30	psr	Tracking	7200	-	-	

FAST Proposal Coverpage

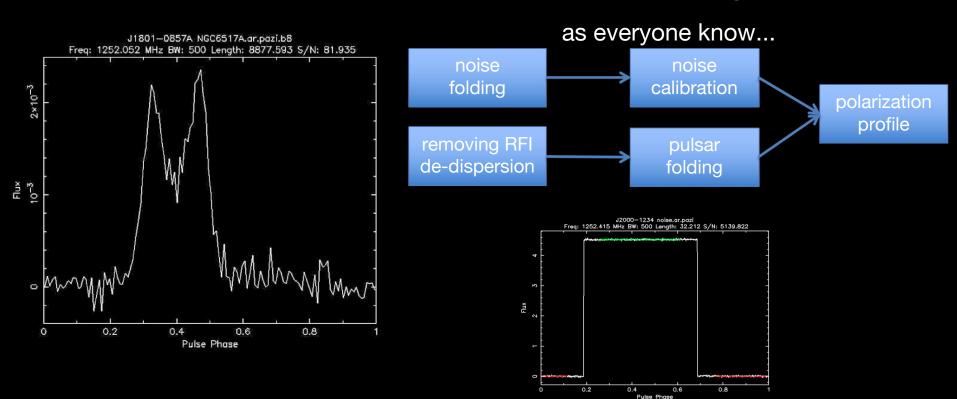
NO: ----

Proposal Title

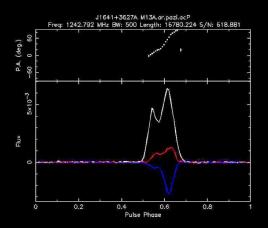
Measuring polarization profiles and flux densities for all pulsars known in Globular Clusters within FAST sky

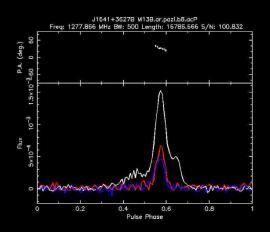
Scientific Category: (Please select a science category in which the experts you expect to review your proposal)

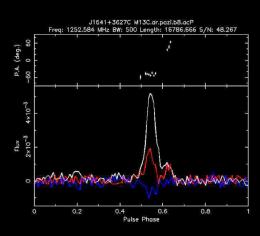
□Pulsar Timing □Pulsar Search □Galactic Spec-line


□Extragalactic Spec-line □FRB □Continuum/Maser/Other

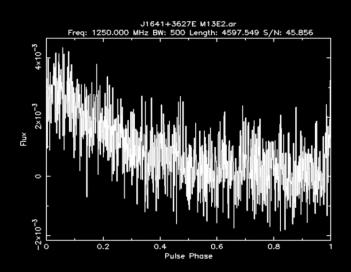
Proposal Abstract

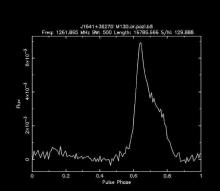

We propose to observe all known pulsars in 17 globular clusters within the FAST sky, with the aim of measuring their polarization profiles and flux densities. The measurement of these properties is a fundamental aspect of astrophysics, crucial for understanding various physical parameters such as radiation mechanisms and magnetic field distributions. We aim to establish a comprehensive database of basic pulsar parameters based on the unprecedented sensitivity of FAST, laying a solid foundation for subsequent research endeavors.

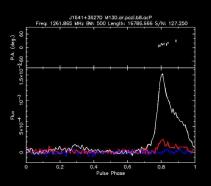

way more data required...observation proposed!

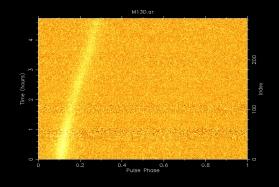

Measuring polarization profiles with FAST - data processing

Preliminary results




10 pulsars in 4 GCs processed more to go


challenges


signal too week

timing results of high precision required

Goals

measuring all pulsars in GCs

build a database

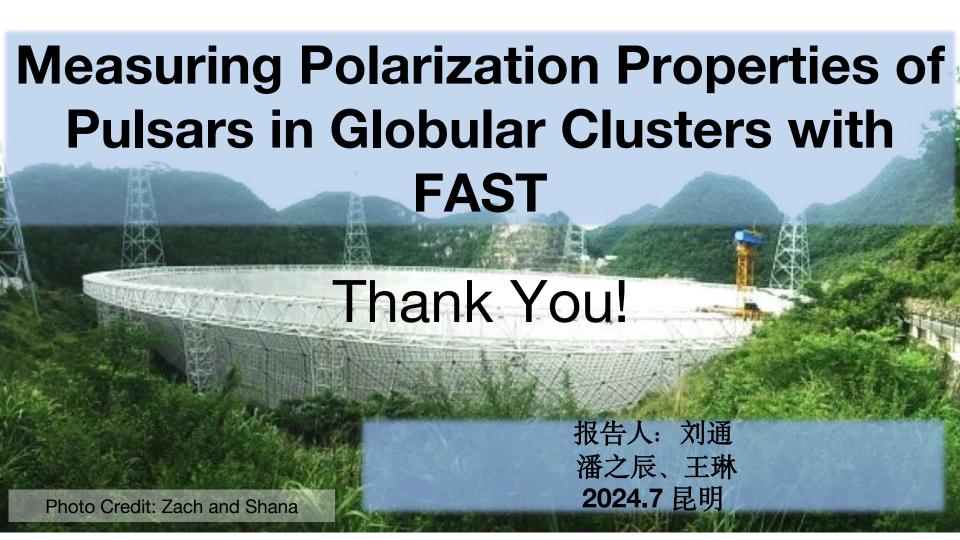
measuring RMs

statistics analyse on profiles

flux density mesturements (observation proposed!)

FAST GC Discovery Page

Goals - flux density mesurements


1745-078 1742-078		J20 B19	~			17h45m27.1040s 17h42m44.0984s	-07d53'0 -07d51'5		Dec00
BAND		Α	В	С	D	FLUX(Jy)	UVMIN(kL)	UVMAX(kL)	
20cm 3.7cm 0.7cm	100000	P P W			P	0.93 0.64 0.45	6		

nearby calibrator observation for globular by FAST - THE BIG ZERO

observation proposed!

VLA Calibrator

Source Name		RA	DEC	RA in deg	DEC in deg	Obs_Time	Pulsar Within?	Cal Name	Cal distance	Cal RA	Cal DEC	Cal FLUX(Jy) in
NGC6205	M 13	16:41:41.24	+36:27:35.5	250.4218333	36.45986111	6.04347074	√	J1635+381	2.1	16:35:15.49	+38:08:04.50	1.90
NGC6218	M 12	16:47:14.18	-01:56:54.7	251.8090833	-1.948527778	3.976039186	\checkmark	J1557-000	12.5	15:57:51.43	-00:01:50.41	1.00
NGC6229		16:46:58.79	+47:31:39.9	251.7449583	47.52775	5.694542505		J1727+455	7.2	17:27:27.65	+45:30:39.73	0.94
NGC6254	M 10	16:57:09.05	-04:06:01.1	254.2877083	-4.100305556	3.662918687	√	J1743-038	11.7	17:43:58.85	-03:50:04.61	1.55
NGC6341	M 92	17:17:07.39	+43:08:09.4	259.2807917	43.13594444	5.906340569	√	J1727+455	3.0	17:27:27.65	+45:30:39.73	0.94
NGC6366		17:27:44.24	-05:04:47.5	261.9343333	-5.079861111	3.507109746		J1743-038	4.2	17:43:58.85	-03:50:04.61	1.55
NGC6402	M 14	17:37:36.10	-03:14:45.3	264.4004167	-3.245916667	3.796300616	\checkmark	J1743-038	1.7	17:43:58.85	-03:50:04.61	1.55
NGC6426		17:44:54.65	+03:10:12.5	266.2277083	3.170138889	4.583194267		J1737+063	3.7	17:37:13.72	+06:21:03.57	1.08
NGC6517		18:01:50.52	-08:57:31.6	270.4605	-8.958777778	2.743290011	√	J1745-078	4.2	17:45:27.10	-07:53:03.60	0.93
NGC6535		18:03:50.51	-00:17:51.5	270.9604583	-0.297638889	4.195522506		J1743-038	6.1	17:43:58.85	-03:50:04.61	1.55

