Research on beamformation of low frequency radio telescope array for pulsar observation

Yukai Zhou Supervisor: Youling Yue, Weiwei Zhu, Renxin Xu Collaborator: Mengyao Xue, Chunfeng Zhang, Chao Wang, Cijie Zhang, Qiuyang Fu, Jiayi Liang, et al.

2024.7.14

0. 21CMA

Figure 1. Photograph of the east-west baseline of the 21CMA, in which the building to the left is the control center. (武向平 2019; C. Zheng, Wu, and Johnston-Hollitt 2015; Q. Zheng et al. 2016)

0. 21CMA

Figure 2. Locations of stations of 21CMA (武向平 2019; C. Zheng, Wu, and Johnston-Hollitt 2015)

0. 21CMA

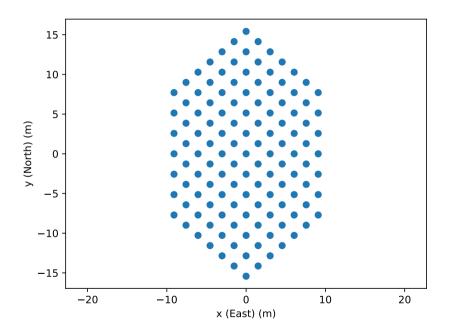
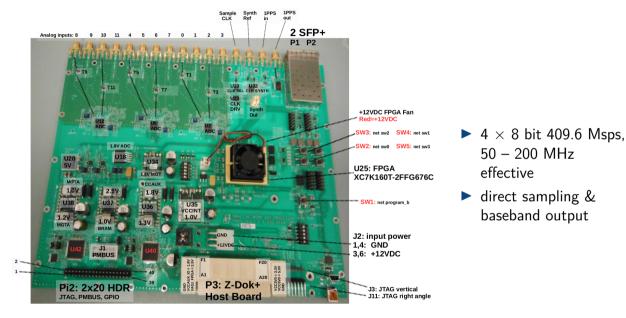
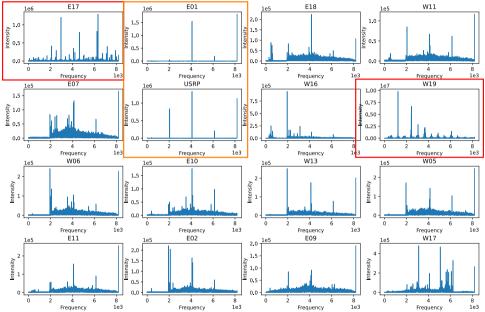
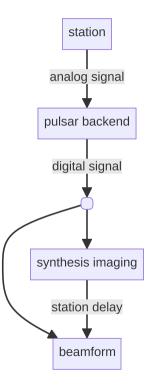


Figure 3. Layout of a single station, each point represents a log-periodic antenna

1. Pulsar Backend


Figure 4. Overview of SNAP (DeBoer et al. 2020)

1. Pulsar Backend

Figure 5. Spectrum of related arrays at UTC 2024-02-26 10:00:00, x-axis: frequency channel, 8192 channels of 0 - 204.8 MHz, y-axis: intensity (not calibrated), stations labeled red: broken on this time point, stations labeled orange: no signal

1. Pulsar Backend

Figure 6. Schematic of data flow

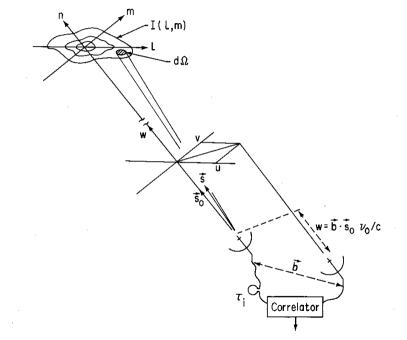


Figure 7. Schematic of synthesis imaging (Thompson 1999)

Research on beamformation of low frequency radio telescope array for pulsar observation

2. Synthesis Imaging: to get delay of stations Signal correlation

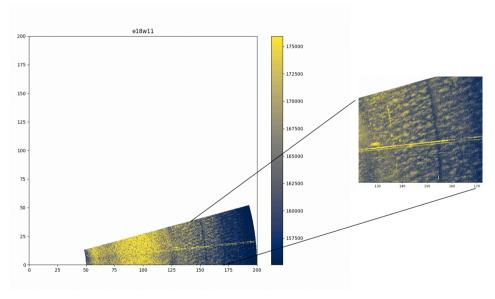
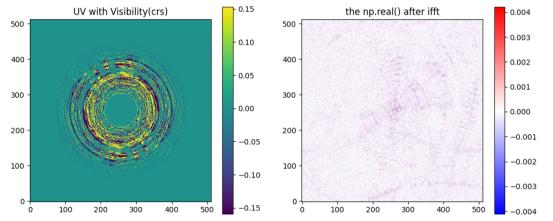
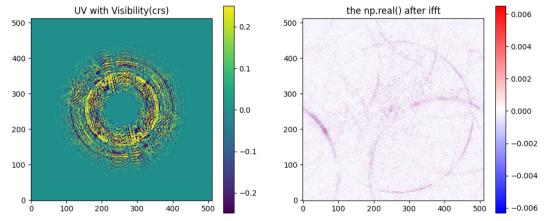
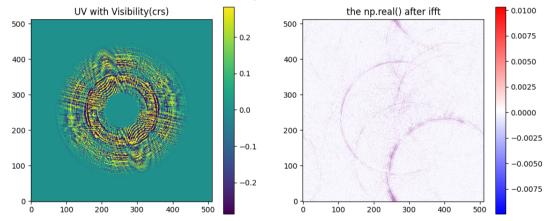



Figure 8. Testing E18 – W11 signal correlation (梁嘉一 2024)


{2024-02-09 15.56-00: ['E18', 'W11'], '2024-02-11 03-43-00: ['E18', 'W11'], '2024-02-12 12-48-00: ['E18', 'W11'], '2024-02-13 14-00-00: ['E18', 'W11'], '2024-02-15 18-00-00: ['E18', 'W

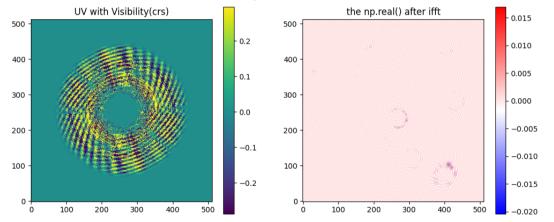
(#01':0.0, #02':0.0, #03':0.0, #04':0.0, #05':0.0, #06':0.0, #07':0.0, #08':0.0, #09':0.0, #12':0.0, #12':0.0, #12':0.0, #14':0.0, #15':0.0, #15':0.0, #13':0.0, #13':0.0, #14':0.0, #13':0

Figure 9. Synthesis imaging using E18 – W11 baseline, with relative delay -350 m.


{2024.02.09 15.56.00: [F18; W11], 2024.02.17 22.40.20: [F18; W11], 2024.02.12 12.48.00; [F18; W11], 2024.02.13 14.00.40; [F18; W11], 2024.02.15 15.00.00; [F18; W11], 2024.02.16 18.16.00; [F18; W11], 2024.02.17 22.00.00: [F18; W11], 2024.02.20 60.00.00; [F18; W11], 2024.02.24 00.00; [F18], W11], 2024.02.2

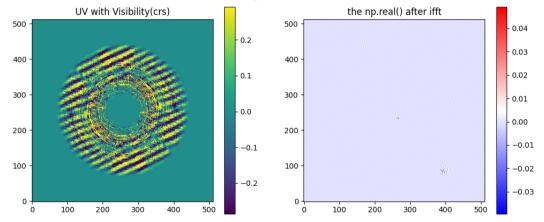
(E01'0.0, 'E02'0.0, 'E03'0.0, 'E03'0.0, 'E05'0.0, 'E05'0.0, 'E05'0.0, 'E05'0.0, 'E05'0.0, 'E10'0.0, 'E11'0.0, 'E12'0.0, 'E12'0.0, 'E13'0.0, 'E14'0.0, 'E15'0.0, 'E15'0.0, 'E13'0.0, 'E1

Figure 10. Synthesis imaging using E18 – W11 baseline, with relative delay -500 m.


{2024.02.09 15.56.00: [F18; W11], 2024.02.17 22.40.20: [F18; W11], 2024.02.12 12.48.00; [F18; W11], 2024.02.13 14.00.40; [F18; W11], 2024.02.15 15.00.00; [F18; W11], 2024.02.16 18.16.00; [F18; W11], 2024.02.17 22.00.00: [F18; W11], 2024.02.20 60.00.00; [F18; W11], 2024.02.24 00.00; [F18], W11], 2024.02.2

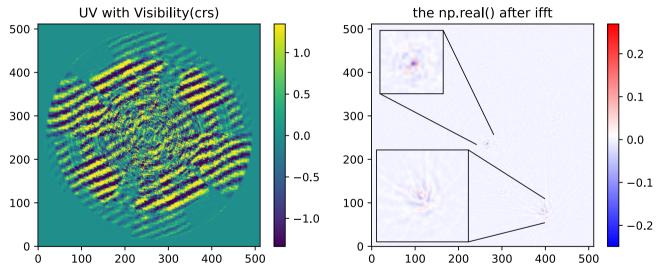
(#01':0.0, #02':0.0, #03':0.0, #04':0.0, #05':0.0, #06':0.0, #07':0.0, #08':0.0, #09':0.0, #11':0.0, #12':0.0, #12':0.0, #14':0.0, #15':0.0, #16':0.0, #11':0.0, #13':0.0, #14':0.0, #13':0

Figure 11. Synthesis imaging using E18 – W11 baseline, with relative delay -700 m.

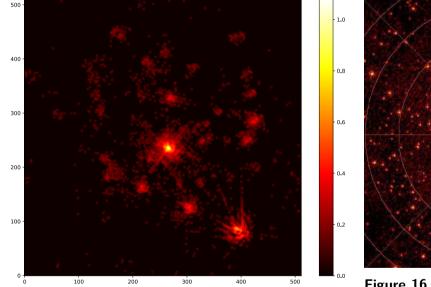

{2024.02.09 15.56.00: [F18; W11], 2024.02.17 22.40.20: [F18; W11], 2024.02.12 12.48.00; [F18; W11], 2024.02.13 14.00.40; [F18; W11], 2024.02.15 15.00.00; [F18; W11], 2024.02.16 18.16.00; [F18; W11], 2024.02.17 22.00.00: [F18; W11], 2024.02.20 60.00.00; [F18; W11], 2024.02.24 00.00; [F18], W11], 2024.02.2

(#01':0.0, #02':0.0, #03':0.0, #04':0.0, #05':0.0, #06':0.0, #07':0.0, #08':0.0, #09':0.0, #11':0.0, #12':0.0, #12':0.0, #14':0.0, #15':0.0, #16':0.0, #11':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #14':0.0, #13':0.0, #13':0.0, #14':0.0, #13':0.0, #13':0.0, #14':0.0, #13':0

Figure 12. Synthesis imaging using E18 – W11 baseline, with relative delay -600 m.


{2024-02-09 15.56-00: [F18; W11], 2024-02-17 22-00-00: [F18; W11], 2024-02-12 12.48-00; [F18; W11], 2024-02-13 14-00-00: [F18; W11], 2024-02-15 01.58-00: [F18; W11], 2024-02-15 18-00-00: [F18; W11], 2024-02-16 18-16-00: [F18; W11], 2024-02-17 22-00-00-00: [F18; W11], 2024-02-22 06-00-00: [F18; W11], 2024-02-24 08-00-00: [F18; W1

(#01':0.0, #02':0.0, #03':0.0, #04':0.0, #05':0.0, #06':0.0, #07':0.0, #08':0.0, #09':0.0, #11':0.0, #12':0.0, #12':0.0, #14':0.0, #15':0.0, #15':0.0, #13':0.0, #13':0.0, #14':0.0, #13':0.0, #13':0.0, #13':0.0, #13':0.0, #14':0.0, #13':0


Figure 13. Synthesis imaging using E18 – W11 baseline, with relative delay -615 m.

Imaging of north celestial pole

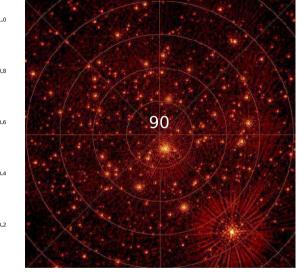


Figure 14. Synthesis imaging of north celestial pole after manual and auto optimization of delays between all available stations, $14 \times 13/2 = 91$ baselines in total. Left: UV coverage and visibility; Right: image of north celestial pole;

Imaging of north celestial pole

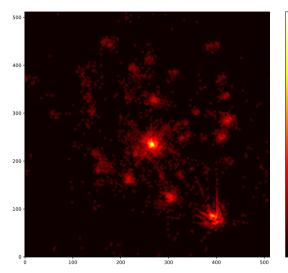


Figure 15. 50 – 200 MHz CLEAN-ed image of north celestial pole, using original simple CLEAN code on fig. 14, data from 14 stations

Figure 16. Reference 75 – 175 MHz dirty image of north celestial pole (Q. Zheng et al. 2016), cut to focus on center region, data from 40 stations

Imaging of north celestial pole

Figure 17. 50 – 200 MHz CLEAN-ed image of north celestial pole, using original simple CLEAN code on fig. 14, data from 14 stations

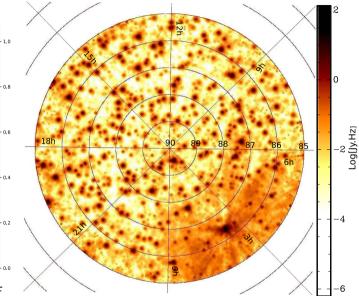
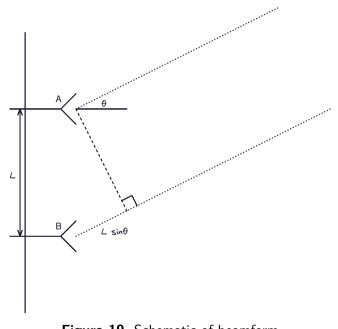
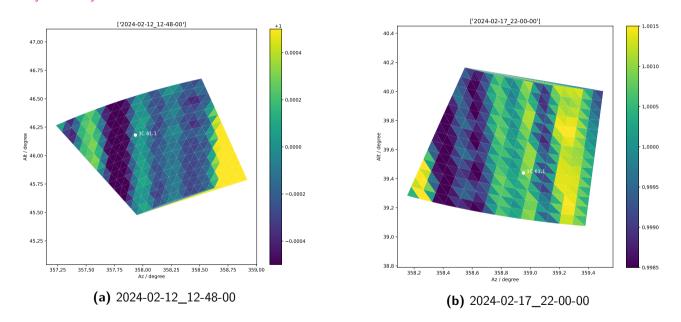
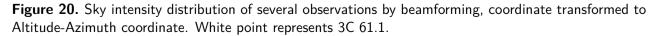
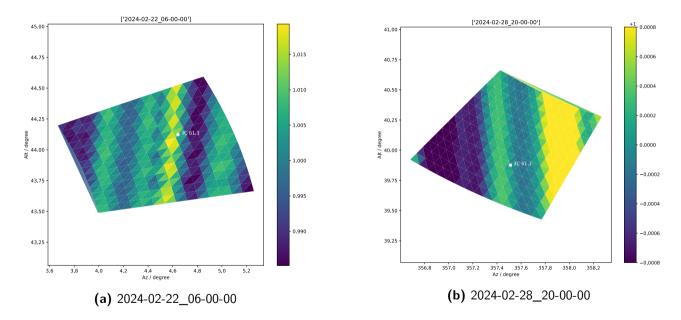
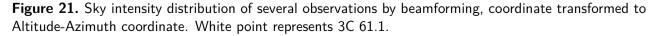


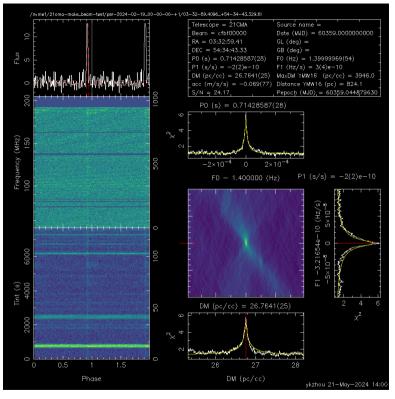
Figure 18. Reference 75 - 175 MHz CLEAN-ed image of north celestial pole (Q. Zheng et al. 2016), data from 40 stations

3. Beamform

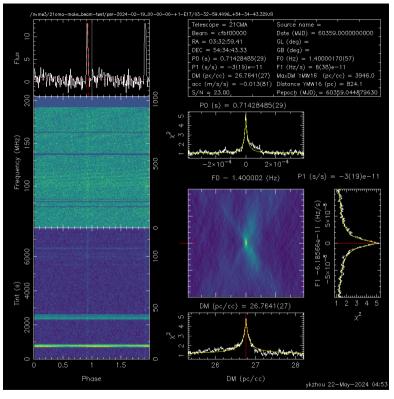





Figure 19. Schematic of beamform


3. Beamform Sky intensity distribution



3. Beamform Sky intensity distribution



3. Beamform PSR B0329+54

Figure 22. Observation 2024-02-19_00-00-00 (UTC) folded using PulsarX (Men et al. 2023a; Men et al. 2023b; Xu et al. 2022) targeting PSR B0329+54

3. Beamform PSR B0329+54

Figure 23. Observation 2024-02-19_00-00-00 (UTC) (E17 only) folded using PulsarX (Men et al. 2023a; Men et al. 2023b; Xu et al. 2022) targeting PSR B0329+54

4. Recent Work Deployment of 6 more SNAPs

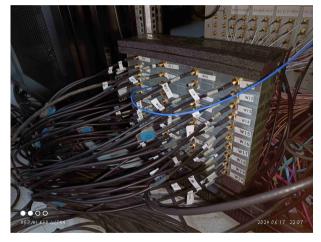


Figure 24. input signal wires

Figure 25. SNAPs with input signal connected

Conclusion & Plan

Done:

- 1. Deployed SNAP-based pulsar backend for 21CMA
- 2. Reproduced synthesis imaging of north celestial pole
- 3. Implemented beamformation for pulsar on 21CMA & observed PSR B0329+54

To do:

- ► Observe PSR J2351+8533
- ► Observe FRB 20240209A (Dec = +86d03m44.28s) (CHIME/FRB Collaboration 2024)
 - no burst detected yet...
- ► Implement distributed FX correlator based on GPU-like accelerators
- Implement distributed beamforming pipeline

Reference I

GHIME/FRB Collaboration (2024).

- CHIME/FRB discovery of an active new repeating fast radio burst source FRB 20240209A. URL: https://www.astronomerstelegram.org/?read=16670.
- DeBoer, Dave et al. (2020). <u>Smart Network ADC Processor (SNAP</u>. URL: https://github.com/casper-astro/casperhardware/blob/master/FPGA_Hosts/SNAP/README.md.
- Men, Yunpeng et al. (2023a). "PulsarX: A new pulsar searching package I. A high performance folding program for pulsar surveys". In: <u>A&A</u> 679, A20. DOI: 10.1051/0004-6361/202347356. URL: https://doi.org/10.1051/0004-6361/202347356.
- Men, Yunpeng et al. (Dec. 2023b). <u>PulsarX: Pulsar searching</u>. Astrophysics Source Code Library, record ascl:2312.012.
- Thompson, A. R. (1999). "Fundamentals of Radio Interferometry". In: <u>Synthesis Imaging in Radio Astronomy II</u>. Ed. by Gregory B. Taylor, Christopher L. Carilli, and Richard A. Perley. Vol. 180. Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific, pp. 11–36.

Reference II

- Xu, H. et al. (Sept. 2022). "A fast radio burst source at a complex magnetized site in a barred galaxy". In: <u>Nature</u> 609.7928, pp. 685–688. ISSN: 1476-4687. DOI: 10.1038/s41586-022-05071-8. URL: https://doi.org/10.1038/s41586-022-05071-8.
- Zheng, Cathie, Xiang-Ping Wu, and Melanie Johnston-Hollitt (2015). <u>The NCP Region Observed with the 21 CentiMeter Array (21CMA)</u>. URL: <u>https://leo.phys.unm.edu/~lwa/abq2015/talks/Zheng.pdf</u>.
- Zheng, Qian et al. (Feb. 2016). "Radio Sources in the NCP Region Observed with the 21 Centimeter Array". In: <u>The Astrophysical Journal</u> 832. DOI: 10.3847/0004-637X/832/2/190.
- 📄 梁嘉一 (2024). "21CMA 脉冲星观测系统的延迟标定". MA thesis. 广州大学.
- 📄 武向平 (2019). <u>中国 SKA 科学报告</u>. 科学出版社.

Thank you!