Constraints of the maximum mass of quark stars based on post-merger evolutions

Yurui Zhou (HUST)

arXiv: 2407.08544

Collaborated with Chen Zhang, Junjie Zhao, Kenta Kiuchi, Sho Fujibayashi and **Enping Zhou**

@FPS 13 in Kunming

QCD Phase Diagram

Post-merger Pictures for Neutron/Quark Stars

Margalit & Metzger 2017

But 1.4 for quark stars

The maximum mass for a supramassive remnant is about 1.2 $M_{\rm TOV}$ for neutron stars but 1.4 for quark stars. How does it affect the Post-merger pictures? Can a supramassive quark star collapse in a short timescale? Analysis for angular momentum dissipation is needed!

Model the Remnant Rotating Quark Stars

Turning point criterion (Friedman, Ipser, and Sorkin 1988) The relation is similar for neutron stars and quark stars

In this phase, Energy and angular momentum are mainly dissipated by gravitational Phase
In this phase, Energy and angular momentum are mainly dissipated by gravitational waves.

$$
J_{\rm merger} = J_0 - J_{\rm GW,i}
$$

$$
M_{\rm merger} = M_0 - E_{\rm GW,i}
$$

$$
E_{\rm GW,i} = \frac{1}{16\pi} \sum_{(\ell,m)} \int_{t_0}^{t_{\rm merger}} dt' r^2 \dot{h}_{\ell m} (t') \, \dot{h}_{\ell m}^* (t')
$$

$$
r_{\rm ,i}=\frac{1}{16\pi}\sum_{(l,m)}\int_{t_{0}}^{t_{\rm merger}}dt'm\Im[r^{2}h_{lm}\left(t'\right)\dot{h}^{\ast}_{lm}\left(t'\right)]
$$

The gravitational waveform can be calculated by accurate waveform $16\pi \frac{1}{(l,m)} J_{t_0}$
The relative error is reduced from 5% to 1%
The gravitational waveform can be calculated by accurate waveform
models like SEOBNRv4T, TEOBResumS, NRTidalv3, etc.

- **Three** main dissipation mechanisms: **mass outflows, neutrinos, and gravitational waves**.
- **Three** conservation equations: **energy, angular momentum, and baryon number**. **• Three main dissipation mechanisms in the Post-merger Phase**

• Three main dissipation mechanisms: mass outflows, neutrinos, and
 gravitational waves.

• Three conservation equations: energy, angular momentum, and bary
-

$$
J_{\text{GW,p}} \approx \frac{E_{\text{GW,p}}}{\pi f_{\text{peak}}} \qquad J_{\text{out}} \approx 5.8 \times 10^{48} \text{ erg s} \left(\frac{M_{\text{out}}}{0.05 M_{\odot}}\right) \left(\frac{R_{\text{out}}}{100 \text{ km}}\right)^{1/2} \approx 9.5 \times 10^{48} \text{ erg s} \left(\frac{E_{\text{GW,p}}}{0.05 M_{\odot}}\right) \left(\frac{f_{\text{peak}}}{3.0 \text{ kHz}}\right)^{-1} \times \left(\frac{M_{\text{MQS}}}{2.6 M_{\odot}}\right)^{1/2},
$$

\n $J_{\nu} \approx 3.0 \times 10^{48} \text{ erg s} \left(\frac{E_{\nu}}{0.1 M_{\odot} c^2}\right) \left(\frac{R_{\text{MQS}}}{15 \text{ km}}\right)^2$ Therefore, in principle, we can determine the amount of dissipation of the three dissipation mechanisms via the three conservation equations, equivalent to solving a linear system with three unknowns.

Main Results

Upper bound for gravitational waves (Zappa et al. 2018)

$$
E_{\rm GW}:=E_{\rm GW,i}+E_{\rm GW,p}\lesssim 0.13\pm0.01\,M_\odot c^2\left(\frac{M}{2.8\,M_\odot}\right).
$$

Main Results

Considering the main uncertainties in our analysis, the constraint can be set as:

 $M_{\rm TOV} \lesssim 2.35_{-0.17}^{+0.07} M_{\odot}$

Threshold Mass for Prompt Collapse

 $M_{\rm thres} \approx 3.10_{-0.06}^{+0.06} M_{\odot}$ about 2% differ from NR simulations $M_{\rm thres} \approx 3.075_{-0.025}^{+0.025} M_{\odot}$

Joint Constraints on the Parameter Space

Reparametrization (Zhang & Mann 2021):

 $\lambda = \frac{\xi_{2a}\Delta^2 - \xi_{2b}m_s^2}{\sqrt{\xi_4a_4}}$ $(\xi_4, \xi_{2a}, \xi_{2b}) = \begin{cases} (((\frac{1}{3})^{\frac{4}{3}} + (\frac{2}{3})^{\frac{4}{3}})^{-3}, 1, 0) & 2SC \text{ phase} \\ (3, 1, 3/4) & 2SC + s \text{ phase} \\ (3, 3, 3/4) & CFL \text{ phase} \end{cases}$ $p=\frac{1}{3}(\rho-4B_{\text{eff}})+\frac{4\lambda^2}{9\pi^2}\left(-1+\text{sgn}(\lambda)\sqrt{1+3\pi^2\frac{(\rho-B_{\text{eff}})}{\lambda^2}}\right)$

Rescaling:

$$
\bar{\lambda} = \frac{\lambda^2}{4B_{\text{eff}}} = \frac{(\xi_{2a}\Delta^2 - \xi_{2b}m_s^2)^2}{4B_{\text{eff}}\xi_4 a_4} \qquad \bar{\rho} = \frac{\rho}{4B_{\text{eff}}}, \ \bar{p} = \frac{p}{4B_{\text{eff}}}
$$
\n
$$
\bar{p} = \frac{1}{3}(\bar{\rho} - 1) + \frac{4}{9\pi^2}\bar{\lambda}\left(-1 + \text{sgn}(\lambda)\sqrt{1 + \frac{3\pi^2}{\bar{\lambda}}(\bar{\rho} - \frac{1}{4})}\right)
$$

EOS can be completely governed by $(\text{sgn}(\lambda)\bar{\lambda}, B_{\text{eff}})$

Summary

- A supramassive quark star can collapse to a black hole in a short timescale because the angular momentum left in it is not large enough to reach the mass shedding limit.
- The mass-gap object can not be consistently explained by quark stars after considering the constraint from the electromagnetic counterparts of GW170817.
- Our analysis can connect the multi-messenger observations and with the future observations of neutrinos and post-merger gravitational waves constraints for EOSs can be better imposed.

Thanks!