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Fast Radio Bursts
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Models: Catastrophic Collapses/ 

Mergers of Compact Star Systems

 Collapses of supramassive neutron stars to black holes at 

several thousand to millions of years old ( Falcke & Rezzolla

2014)  or at birth ( Zhang 2014);

 Inspiral or mergers of double neutron stars ( Totani 2013 ; Wang 

et al. 2016); 

 Mergers of binary white dwarfs ( Kashiyama et al. 2013);

 Mergers of charged black holes ( Zhang 2016);

 Collisions of asteroids/ comets with neutron stars ( Geng & 

Huang 2015) .
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Repeating FRB 121102
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Localization of FRB 121102

 (a) A 5-ms dispersion-corrected dirty image shows 

a burst from FRB 121102 at MJD 57633.67986367 

(2016 Sep 02). The approximate localization 

uncertainty from previous Arecibo detections9 (30 

beam FWHM) is shown with overlapping circles. 

 (b) A zoomed in portion of the above image, de-

convolved and recentered on the detection, 

showing the 0.100 localization of the burst.
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 A 100-milliarcsecond localization of FRB 121102 by VLA



Host Galaxy of FRB 121102

 A low-metallicity, star-forming, 

mr’=25.1 AB mag dwarf galaxy at a 

redshift of z = 0.19273(8), ~1 Gpc. 

 This host has a diameter~4 kpc, a 

stellar mass of M*~(4–7)×107Msun, 

an SFR of ~0.4Msun yr−1, and a 

substantial host DM≤ 324 pc cm−3.
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Long GRBs and Type I SLSNe
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Millisecond Magnetar Engine

SN ejecta

GRB ejecta



Long GRBs and Type I SLSNe
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Millisecond Magnetar Engine
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Persistent Radio Counterpart

 A faint 180 uJy persistent radio 

source with a continuum 

spectrum that is consistent with 

non-thermal emission.

 The flux density of the persistent 

radio source varies by tens of 

percent on day timescales, and 

very long baseline radio 

interferometry yields an angular 

size less than 1.7 milliarcseconds.

 A counterpart to FRB 121102 is 

detected in archival Keck image 

at RAB =24.9 mag and in Gemini 

GMOS r-band image at rAB = 

25.1 mag
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Persistent Radio Counterpart

 the European VLBI Network and 
the 305-m Arecibo telescope
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≤0.2mas (~0.7 pc) separation to FRB.



Persistent Radio Counterpart
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Persistent Radio Counterpart
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Persistent Radio Counterpart

 By considering that the luminosity of the wind emission is 

ultimately determined by the spin-down luminosity of the 

magnetar, it is convenient to simply require the spin-down 

luminosity to be higher than the luminosity of the steady radio 

emission
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DM contributed by SN ejecta
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Local DM of FRB 121102
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Local DM of FRB 121102
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For SLSN host galaxies

Our Analysis



Electron-Positron Wind of a Magnetar
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Constraints on the wind
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Constraints on the wind
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Constraints on magnetar Parameters

 To make the lower and upper limits of the magnetar age 

consistent with each other

 For a putative DM_{src,up} ~ 5 pc cm^- 3 , mu ~ 100 , and a 

relatively low magnetic field of Bp ~ 10^14 G , all of the limits on 
the age can reach a consensus at the age of about ∼ 100 years.
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Conclusions

 If FRB 121102 and its persistent radio counterpart is 

powered by the spin-down of a young magnetar, the 

age of the magnetar should be around 100 years.

 The DM contributed by the magnetar and the possible 

supernova ejecta is probably on the order of a few pc 

cm^- 3 .

 The magnetic field strength of the magnetar is more 

likely associated with SLSNe than long GRBs.

 The electron-positron multiplicity is not very much higher 

than unity at the light cylinder radius.
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 Rotational Energy: FRBs could be analogical to giant pulses that are 

powered by the spin-down of a magnetar (Cordes & Wasserman 2016).

 Magnetic Energy: giant fl ares of soft gamma-ray repeaters ( Popov & 

Postnov 2010; Lyubarsky 2014) .

 Gravitational Energy: repeated material captures by magnetars from 

an asteroid belt (Dai et al. 2016) or white dwarf campanion (Gu et al. 

2016).

 Kinetic Energy: pulsars suddenly “ combed”  by a nearby strong 

plasma stream ( Zhang 2017) .

Possible Energy Source of the FRB
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Possible Energy Source of the FRB

 Rotational Energy: we propose that the energy release of an 

FRB is connected with a glitch-like process (Cao et al. 2017)

 Observations of Galactic pulsars usually found 

for their glitches, and the current maximum value can be as large 

as 10^−5 ( Yuan et al. 2010 ; Manchester & Hobbs 2011) .
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