

The Spin-down State Change and Mode Change Associated with Glitch Activity of PSR B2035+36

Feifei Kou Coauthor: J. P. Yuan, N. Wang, W. M. Yan & S. J. Dang 04/07/2018

Introduction

- Pulsar: the most stable 'clocks' in the universe
- Observational irregularities in pulsar timing :
- \triangleright Timing noise:
	- A fairly continuous erratic behavior

\blacktriangleright Glitch:

A sudden increase in spin frequency, often followed by a recovery process

The glitch in the Vela pulsar, October 1981 (Lyne & Smith 20.2)

The pulsar glitch

• Glitch size:

 $\Delta v / v \sim 10^{-12} - 10^{-5} (10^{-9} - 10^{-6})$ $\Delta \dot{v} / \dot{v} \sim 10^{-3} - 10^{-2}$

- 520 known glitches in 180 different pulsars
- The recovery: $Q = \Delta v_d / \Delta v$ \triangleright The Vela pulsar: $Q < 0.2$ \triangleright The Crab pulsar: $Q > 0.8$
- Internal origion:
	- \triangleright Star-quake (Baym et al. 1969; Zhou et al. 2014)
	- \triangleright Unpinning of interior superfluid vortices (Anderson & Itoh 1975) Unpinning of interior superfluid vortices (Anderson α Variations of ν and $\dot{\nu}$ of PSR ltoh 1975)

No radiative and pulse profile changes observed associated with most glitch events, except:

 \triangleright The Vela pulsar

4.4s before glitch at 12/12/2016

ØPSR J1119-6127

single peak \rightarrow double peak (3 mins) (Weltevrede et al.2011)

ØPSR J0742-2822

strong correlation between observed pulse shape and spin-down rate after glitch (Keith et al. 2013)

ØPSR J2021+4026

4% increase in spin-down rate, 18% decrease in gamma- ray flux (Zhao et al. 2017)

 \triangleright PSR B2035+36,......
Single pulses before glitch of the vela pulsar (Palfreyman et al. 2018)

PSR B2035+36

- Radio pulsar (Dewey et al. 1985)
- $P = 0.6178$ s $\dot{P} = 4.5024 * 10^{-15} \frac{s}{s}$ $\frac{5}{s}$ (Hobbs et al. 2004)

 $\rightarrow B_{\rm s} \sim 1.69 \times 10^{12} \,\rm G$ $\tau_{\rm c} \sim 2.18 \,\rm Myr$

• 13.28% increase in the spin-down rate & 28% change in pulse width (W_{eq}) (Lyne et al .2010)

Observation Method

- Nanshan 25-m radio telescope
- \triangleright PSR B2035+36 was observed three times pre month.
- ØData span: 08/2002~08.2010
- ØAFB: 128*2.5MHz sub-channels

• The standard timing model at SSB:

 $\phi(t) = \phi_0 + v(t - t_0) + \frac{1}{2}\dot{v}(t - t_0)^2 + \frac{1}{6}\ddot{v}(t - t_0)^3$,

• Pulsar glitch is described by a combination of step changes of ν and \dot{v} :

$$
\nu(t) = \nu_0(t) + \Delta \nu_p + \Delta \dot{\nu}_p t + \Delta \nu_d e^{-t/\tau_d} ,
$$

$$
\dot{\nu}(t) = \dot{\nu}_0(t) + \Delta \dot{\nu}_p + \Delta \dot{\nu}_d e^{-t/\tau_d} ,
$$

The glitch

- A small glitch at MJD 52950
- A relatively large increase in spin-down rate
- No recovery process observed (< 80days)

Table 2. Glitch parameters of PSR B2035+36, produced by TEMPO2.

Parameter	Value
Data span (MJD)	52705-53360
Glitch epoch (MJD)	52950(40)
Δv_p (s ⁻¹)	$12.4(5) \times 10^{-9}$
$\Delta v/v$	$7.7(8) \times 10^{-9}$
$\Delta \dot{\nu}_p$ (s ⁻²)	$-0.84(3) \times 10^{-15}$
$\Delta \dot{\nu} / \dot{\nu}$	$67(8) \times 10^{-3}$

The spin-down state change

- The spin-down rate increased 800 days after the glitch, opposite to the typical post glitch behavior!
- \rightarrow v decreases quickly

 \rightarrow 9.6% increase in | \dot{v} |

• Compared with the variation trend pre-glitch, \dot{v} post-glitch evolved to a more stable state

The pulsar turned to a higher and more stable spin-down state after the glitch !

Table 1. Timing parameters of PSR B2035+36.

 \dot{v} became much stable after MJD 53800 (dot-dashed line)

Mode changing

- Pulse width became narrower after the glitch
- Bimodal distribution of w_{50} after the glitch,

The relatively narrow pulse is the dominant emission mode

ØEmission mode changed accompanied with the glitch \triangleright The pulsar began to switch between two emission modes after the glitch

Distributions of *W*₅₀ in units of degrees for PSR B2035+36.

The integrated normalized pulse profiles of different pulse profile modes of PSR B2035+36.

Distributions of intensity ratio between the leading components and middle components for PSR B2035+36.

- Three components, the middle component is dominant
- The leading and trailing components post-glitch became weaker than those pre-glitch
- The pulsar switched between two emission modes because of intensity variation in the leading and trailing components

Table 3. Pulse profile parameters. 'Wide' and 'narrow' mean pulse profiles with larger and smaller values of W_{50} .

n_{nar}/n_{wid} : 1.32 (MJD 52985–53794) to ~1.83 (MJD 53816–55899)

 \rightarrow The dominant trend of the narrow pulse profile became more and more obvious as the pulsar evolved to a more stable rotation state.

Discussions

- Glitch \rightarrow **internal** origin; spin-down & emission \rightarrow **external** braking torque and magnetospherical radiation
- ØWind braking modal (Xu & Qiao 2001; Kou & Tong 2015)

The glitch \rightarrow the density in the magnetosphere Γ the spin-down state change the emission mode change

$$
\frac{\dot{\Omega}'}{\dot{\Omega}} = \frac{\eta(\kappa')}{\eta(\kappa)} \qquad \Delta \dot{\nu} / \dot{\nu} \sim 9.6\% \frac{\Delta k}{k} \sim 22\%
$$

• Force-free magnetosphere (Spitkovsky 2006; Zhao et al. 2017) The glitch \rightarrow the inclination angle \top the spin-down state change the emission mode change

$$
\Delta \dot{v}/\dot{v} \sim 9.6\%, \Delta a \sim 8^{\circ}
$$

Conclusions

- PSR B2035+36 underwent a small glitch with $\Delta v \sim 12.4(5)$ nHz around MJD 52950
- Spin-down state change
- \triangleright | \dot{v} | increased persistently over 800 d after the glitch
- \triangleright opposite to the typical evolution post-glitch
- ≥ 9.6 % larger than that pre-glitch
- Mode change
- \triangleright the pulse profile became narrower
- \triangleright the pulsar began to switch between two emission modes
- \triangleright the relatively narrow pulse profile gradually became dominant

à **There should be a connection between magnetospherical behavior and glitch activity**

References

- Anderson, P. W. & Itoh, N. 1975, Nature, 256, 25
- Baym, G., Pethick, C., Pines, D., & Ruderman, M. 1969, Nature, 224, 872
- Dewey R. J., Taylor J. H., Weisberg J. M., Stokes G. H., 1985, ApJ, 294, L25
- PALFREYMAN J, DICKEY J M, HOTAN A, et al., 2018. Alteration of the magnetosphere of the vela pulsar during a glitch.[J]. Nature.
- Keith M J, Shannon R M, Johnston S, 2013. A connection between radio state changing and glitch activity in PSR J0742-2822[J]. MNRAS, 432: 3080-3084.
- Kou F F, Tong H, 2015. Rotational evolution of the Crab pulsar in the wind braking model[J]. MNRAS, 450: 1990-
1998
- Lyne A. & Graham-Smith F., 2012. Pulsar Astronomy.
- Lyne A., Hobbs G., Kramer M., Stairs I. & Stappers B., 2010, Science, 329:408.
- Spitkovsky, A. 2006, ApJL, 648, 51
- Xu R X, Qiao G J, 2001. Pulsar Braking Index: A Test of Emission Models?[J]. ApJL, 561: L85- L88
- Zhao J, Ng C W, Lin L C C, et al., 2017. Mode Change of a Gamma-Ray Pulsar, PSR J2021+4026. ApJ, 842: 53
- Zhou, E.P., Lu, J.G., Tong, H., Xu, R.X., 2014, MNRAS, 443, 2705

