

The Spin-down State Change and Mode Change Associated with Glitch Activity of PSR B2035+36

Feifei Kou Coauthor: J. P. Yuan, N. Wang, W. M. Yan & S. J. Dang 04/07/2018

Observation method

Results

Discussions & Conclusions

References

Timing

Mode changing

Introduction

- Pulsar: the most stable 'clocks' in the universe
- Observational irregularities in pulsar timing :
- ➤Timing noise:
 - A fairly continuous erratic behavior

≻Glitch:

A sudden increase in spin frequency, often followed by a recovery process

The glitch in the Vela pulsar, October 1981 (Lyne & Smith 20, 2)

The pulsar glitch

• Glitch size:

 $\Delta \nu / \nu \sim 10^{-12} - 10^{-5} (10^{-9} - 10^{-6})$ $\Delta \dot{\nu} / \dot{\nu} \sim 10^{-3} - 10^{-2}$

- 520 known glitches in 180 different pulsars
- The recovery: Q = Δv_d/Δv
 ➤ The Vela pulsar: Q < 0.2
 ➤ The Crab pulsar: Q > 0.8
- Internal origion:
 - Star-quake (Baym et al. 1969; Zhou et al. 2014)
 - Unpinning of interior superfluid vortices (Anderson & Itoh 1975)

No radiative and pulse profile changes observed associated with most glitch events, except:

≻The Vela pulsar

4.4s before glitch at 12/12/2016

≻PSR J1119-6127

single peak \rightarrow double peak (3 mins) (Weltevrede et al.2011)

≻PSR J0742-2822 —

strong correlation between observed pulse shape and spin-down rate after glitch (Keith et al. 2013)

≻PSR J2021+4026

4% increase in spin-down rate, 18% decrease in gammaray flux (Zhao et al. 2017)

≻PSR B2035+36,.....

Single pulses before glitch of the vela pulsar (Palfreyman et al. 2018)

PSR B2035+36

- Radio pulsar (Dewey et al. 1985)
- $P = 0.6178 \, s \, \dot{P} = 4.5024 * 10^{-15} \frac{s}{s}$ (Hobbs et al. 2004)

 $\rightarrow B_{\rm s} \sim 1.69 \times 10^{12} \,\mathrm{G}$ $\tau_{\rm c} \sim 2.18 \,\mathrm{Myr}$

• 13.28% increase in the spin-down rate & 28% change in pulse width (W_{eq}) (Lyne et al .2010)

Observation Method

- Nanshan 25-m radio telescope
- ➢PSR B2035+36 was observed three times pre month.
- ≻Data span: 08/2002~08.2010
- ≻AFB: 128*2.5MHz sub-channels

• The standard timing model at SSB:

 $\phi(t) = \phi_0 + \nu(t - t_0) + \frac{1}{2}\dot{\nu}(t - t_0)^2 + \frac{1}{6}\ddot{\nu}(t - t_0)^3,$

Pulsar glitch is described by a combination of step changes of v and v:

$$v(t) = v_0(t) + \Delta v_p + \Delta \dot{v}_p t + \Delta v_d e^{-t/\tau_d} ,$$

$$\dot{v}(t) = \dot{v}_0(t) + \Delta \dot{v}_p + \Delta \dot{v}_d e^{-t/\tau_d} ,$$

The glitch

- A small glitch at MJD 52950
- A relatively large increase in spin-down rate
- No recovery process observed (< 80days)

Table 2. Glitch parameters of PSR B2035+36, produced by TEMPO2.

Parameter	Value	
Data span (MJD)	52705-53360	
Glitch epoch (MJD)	52950(40)	
$\Delta v_p (s^{-1})$	$12.4(5) \times 10^{-9}$	
$\Delta \nu / \nu$	$7.7(8) \times 10^{-9}$	
$\Delta \dot{\nu}_p \ (\mathrm{s}^{-2})$	$-0.84(3) \times 10^{-15}$	
$\Delta \dot{\nu} / \dot{\nu}$	$67(8) \times 10^{-3}$	

The spin-down state change

- The spin-down rate increased 800 days after the glitch, opposite to the typical post glitch behavior!
- $\rightarrow v$ decreases quickly
- \rightarrow 9.6% increase in $|\dot{v}|$
- Compared with the variation trend pre-glitch, \dot{v} post-glitch evolved to a more stable state

The pulsar turned to a higher and more stable spin-down state after the glitch !

Parameter	Pre-glitch	Post-	glitch
Pulsar name		B2035+36(J2037+3621)	
RA (h:m:s)		20: 37: 27.44(3)	
Decl. (° : $'$: '')		+36: 21: 24.1(3)	
Pulse frequency, ν (s ⁻¹)	1.616250 000 20(6)	1.616249 249 98(3)	1.616247 561 227(9)
First derivative of pulse frequency, $\dot{\nu}$ (s ⁻²)	$-1.2037(5) \times 10^{-14}$	$-1.3258(1) \times 10^{-14}$	$-1.32670(1) \times 10^{-14}$
Second derivative of pulse frequency, \ddot{v} (s ⁻³)	$-2.3(2) \times 10^{-23}$	$-5.2(2) \times 10^{-24}$	$8.32(7) \times 10^{-25}$
Data span (MJD)	52496-52907	52985-53794	53816-55899
Zero epoch for the timing solution (MJD)	52701	53389	54858
Number of ToAs	37	58	216
RMS timing residual (μ s)	912	1280	1234
Time-scale		TDB	
Solar system ephemeris model		DE 421	

Table 1. Timing parameters of PSR B2035+36.

 \dot{v} became much stable after MJD 53800 (dot-dashed line)

Mode changing

- Pulse width became narrower after the glitch
- Bimodal distribution of w_{50} after the glitch ,

The relatively narrow pulse is the dominant emission mode

Emission mode changed accompanied with the glitch
 The pulsar began to switch between two emission modes after the glitch

Distributions of W_{50} in units of degrees for PSR B2035+36.

The integrated normalized pulse profiles of different pulse profile modes of PSR B2035+36.

Distributions of intensity ratio between the leading components and middle components for PSR B2035+36.

- Three components, the middle component is dominant
- The leading and trailing components post-glitch became weaker than those pre-glitch
- The pulsar switched between two emission modes because of intensity variation in the leading and trailing components

Parameter	Pre-glitch 52496-52907	Post-glitch				
Datas pan (MJD)		52985-53794		53816–55899		
•		narrow	wide	narrow	wide	
Mean FWHM W_{50} (°)	10.7(1.4)	3.8(5)	8.9(4)	3.6(2)	8.4(8)	
Number of pulse profiles	28	29	22	108	59	
Intensity ratio of leading and middle components	0.86(6)	0.40(3)	0.62(5)	0.39(3)	0.57(4)	

Table 3. Pulse profile parameters. 'Wide' and 'narrow' mean pulse profiles with larger and smaller values of W_{50} .

n_{nar}/n_{wid} : 1.32 (MJD 52985–53794) to ~1.83 (MJD 53816–55899)

 \rightarrow The dominant trend of the narrow pulse profile became more and more obvious as the pulsar evolved to a more stable rotation state.

Discussions

- Glitch →internal origin; spin-down & emission →external braking torque and magnetospherical radiation
- ≻Wind braking modal (Xu & Qiao 2001; Kou & Tong 2015)

The glitch \rightarrow the density in the magnetosphere \int the spin-down state change the emission mode change

$$\frac{\dot{\Omega}'}{\dot{\Omega}} = \frac{\eta(\kappa')}{\eta(\kappa)} \qquad \qquad \Delta \dot{\nu} / \dot{\nu} \sim 9.6\% \ \frac{\Delta k}{k} \sim 22\%$$

Force-free magnetosphere (Spitkovsky 2006; Zhao et al. 2017)
 The glitch→ the inclination angle ______ the spin-down state change the emission mode change

$$\Delta \dot{v}/\dot{v}$$
~9.6%, $\Delta lpha$ ~8°

Conclusions

- PSR B2035+36 underwent a small glitch with $\Delta v \sim 12.4(5)nHz$ around MJD 52950
- Spin-down state change
- $|\dot{v}|$ increased persistently over 800 d after the glitch
- ≻opposite to the typical evolution post-glitch
- ▶ 9.6 % larger than that pre-glitch
- Mode change
- ≻the pulse profile became narrower
- > the pulsar began to switch between two emission modes
- > the relatively narrow pulse profile gradually became dominant

\rightarrow There should be a connection between magnetospherical behavior and glitch activity

References

- Anderson, P. W. & Itoh, N. 1975, Nature, 256, 25
- Baym, G., Pethick, C., Pines, D., & Ruderman, M. 1969, Nature, 224, 872
- Dewey R. J., Taylor J. H., Weisberg J. M., Stokes G. H., 1985, ApJ, 294, L25
- PALFREYMAN J, DICKEY J M, HOTAN A, et al., 2018. Alteration of the magnetosphere of the vela pulsar during a glitch.[J]. Nature.
- Keith M J, Shannon R M, Johnston S, 2013. A connection between radio state changing and glitch activity in PSR J0742-2822[J]. MNRAS, 432: 3080-3084.
- Kou F F, Tong H, 2015. Rotational evolution of the Crab pulsar in the wind braking model[J]. MNRAS, 450: 1990-1998
- Lyne A. & Graham-Smith F., 2012. Pulsar Astronomy.
- Lyne A., Hobbs G., Kramer M., Stairs I. & Stappers B., 2010, Science, 329:408.
- Spitkovsky, A. 2006, ApJL, 648, 51
- Xu R X, Qiao G J, 2001. Pulsar Braking Index: A Test of Emission Models?[J]. ApJL, 561: L85- L88
- Zhao J, Ng C W, Lin L C C, et al., 2017. Mode Change of a Gamma-Ray Pulsar, PSR J2021+4026. ApJ, 842: 53
- Zhou, E.P., Lu, J.G., Tong, H., Xu, R.X., 2014, MNRAS, 443, 2705

