

The Scattering and Dispersion Measures of FRBs by the Intergalactic Medium

Fupeng Zhang²

Weishan Zhu¹, Longlong Feng¹ 1 Sun Yet-sen University 2 Guangzhou University Zhu

Zhu, Feng & Zhang, 2018, ApJ submitted

Fast Radio Burst

Fast radio bursts (FRBs) are a class of millisecond-duration radio transients (Lorimer et al. 2007).

 $\triangle t \propto v^{-2}$ (GHz) Dispersio 1.4 requency n by cold ionized plasma 1.3 32 FRBs (2018.6)

Origin

Large DM =177-2596pc cm⁻³: naturally attributed to the intergalactic plasma (Cordes et al. 2016,loka 2003; Inoue 2004; Deng & Zhang 2014; McQuinn 2014)

Fast Radio Burst: Models

Supergiant pulses:

Short (us) radio bursts with strong peak (Cordes & Wasserman 2016; Connor et al. 2016)

> Magnetars

Hyperflares of magnetars, similar to Soft Gamma Ray repeaters (Popov et al. 2010, Murase et al. 2016, Lyutikov 2002)

Other models

Merging or colliding neutron stars (Totani 2013) Neutron star collapse (Falcke & Rezzolla 2014) Collision of asteroids with neutron stars (Dai et al. 2016)

The temporal smearing (broadening) of FRB : τ ~1-10 ms at v ~ 1 GHz (Petroff 2016) τ ∝ v ⁻⁴

$$\tau = \frac{D_{\rm L} D_{\rm S} \theta_{\rm scat}^2}{c \, D_{\rm LS} \left(1 + z_L\right)}.$$

Kolmogorov turbulence

Electron energy power spectrum of turbulence

$$\Phi_{N_e}(\mathbf{q};l) = C_N^2(l) q^{-\beta} e^{-(ql_0)^2}, \quad q > \frac{2\pi}{L_0}.$$

Outer scale L₀, inner scale I₀
Both simulation and observation can't provide any information between ~10 kpc - 10 AU

The scattering measure of FR

$$SM_{eff}(z_s) = \int_0^{z_s} \frac{C_N^2(z)d_H(z)}{(1+z)^3} dz,$$

Coles et al. 1987

The debate of the broadening of FRB >Host Galaxy?

 The host can cause significant broadening to explain the observation (Cordes et al. 2016)

≻IGM?

2013)

- Assuming IGM is uniform, L₀~ 10⁻² pc (Luan & Goldreich 2014, Xu & Zhang 2016).
- ✓ But IGM is not uniformly distributed
- ✓ There are significant LOS variations of T (Macquart & Koay

Yao et al. 2017

Simulations

 Fixed-grid cosmological hydrodynamical simulation using the code WIGEON (Feng et al. 2004; Zhu et al. 2013)

	Box Size (h ⁻¹ Mpc)	Spatial Resolution h ⁻¹ kpc	Grid size
B200	200	195	1024 ³
B100	100	97.7	1024 ³
B050	50	48.8	1024 ³

Cosmic Web

≻Voids

>Walls

➢Filaments

Clusters

Zhu, Feng & Zhang, 2018, ApJ submitted

DM, SM and temporal smearing

$$\mathrm{DM}(z_s) = \int_0^{z_s} \frac{n_e(z)}{1+z} dl,$$

$$\begin{split} \mathrm{SM}_{\mathrm{eff}}\!\left(z_{s}\right) &\approx 1.31 \times 10^{13} m^{-17/3} \cdot \frac{1}{h} \left(\frac{\Omega_{b}}{0.049}\right)^{2} \left(\frac{L_{0}}{1 \mathrm{pc}}\right)^{-2/3} \\ &\times \int_{0}^{z_{s}} \left(\rho_{b}(z)/\bar{\rho}_{b}(z)\right)^{2} \frac{(1+z)^{3}}{[\Omega_{\Lambda} + \Omega_{m}(1+z)^{3}]^{1/2}} dz. \end{split}$$

$$\tau = 3.32 \times 10^{-4} (1 + z_L)^{-1} (\frac{\lambda_0}{30cm})^4 (\frac{D_{\text{eff}}}{1 \text{Gpc}})$$

$$\times \left(\frac{\mathrm{SM}_{\mathrm{eff}}}{10^{12}m^{-17/3}}\right) \left(\frac{l_0}{1\mathrm{AU}}\right)^{-1/3} ms, r_{\mathrm{diff}} < l_0,$$

R_{diff} diffractive length scale

$$\tau = 9.50 \times 10^{-4} (1 + z_L)^{-1} (\frac{\lambda_0}{30cm})^{22/5} (\frac{D_{\text{eff}}}{1 \text{Gpc}}) \times (\frac{\text{SM}_{\text{eff}}}{10^{12}m^{-17/3}})^{6/5} ms, r_{\text{diff}} > l_0,$$

Dispersion Measure of FRB by IGM

Scattering Measure of FRB by IGM

- The SM show significant LOS variations
- Clumpy IGM increase the SM by 20 times

Increase with resolution

Void & Wall: 4-5%
Filaments: 20-30%
Clusters: 65-80%

Zhu, Feng & Zhang, 2018, ApJ submitted

Contribution from host and IGM

Conclusions

The scattering of FRBs by IGM is explored using cosmological hydrodynamical simulations

Scattering of FRB by IGM Voids & walls: weak, filaments & clusters: strong Significant LOS variation Some FRBs may be explained by IGM, while others by host

The outer scale L₀~5 pc is required to explain the observed scattering. But it increases with the resolution scale.

Some FRBs can be useful tools to probe the gas in clusters and filaments.

Thank you!~~

Cosmic Web

