Magnetar-like outburst from high-magnetic field radio/gamma-ray pulsar PSR J1119-6127

reporter : Huihui Wang Supervisor:Jumpei Takata wanghh@hust.edu.cn Huazhong University of Science and Technology (HUST)

collaborators:

L.C.C. Lin, Jumpei Takata ,Kwan-Lok Li, Chin-Ping Hu, C. Y. Hui, Pak-Hin T. Tam, and C.-Y. Ng

outline

♦ spin-down power: $\dot{\vec{E}} = 2.3 \times 10^{36} \text{ ergs s}^{-1}$

Strong magnetic field RPPs on P-P diagram

6

 \diamond

SGR 0418+5729

10.0

CXOU J164710.2-455216

wift J1822.3-1606

Hu et al., 2016

High-Magnetic field Pulsar

The magnetic field of PSR J1119-6127 : $B = 4.1 \times 10^{13}G$, it is around critical field of QED .(4.4X10^13 G)

--One order of magnitude stronger than usual pulsars --One or two order of magnitude lower than magnetars.

Pulsed emission : radio, X-ray and gamma-ray (typical young pulsar)

• **Glitch** : glitch in 2004 and large glitch in 2007,2016 (typical young pulsar)

2016 X-ray outburst

Fermi/GBM triggered on a burst on 2016 July 27 (trigger: bn160727543) located within the error box of PSR J1119–6127, covering a duration of 0.040s .

> Glitch with a size $\Delta\Omega/\Omega \sim 6 \times 10^{-6}$.

Emission during the burst

- Hard X-ray emission (>10keV) were clearly observe with a non-thermal component
- Surface temperature increases from ~0.2keV to ~1keV
- Thermal X-ray luminosity is almost 10% of the spin down power (no such other pulsars)

Magnetically powered outburst

By Archibald et al.2016

Motivation of this work

PSR J1119-6127 is the first gamma-ray pulsar that shows both rotation powered and magnetic powered activities:

Timing evolution after the outburst?

How X-ray emission evolves after the outburst?

How X-ray outburst affects the gamma-ray emissions?

Swift/XMM-Newton/Nustar data

X-RAY

Data events

тиге т

SPIN PERIODS OF PSR J11119-6127 DETEMINED BY THE X-RAY DATA AFTER 2016 OUTBURST IN THE END JULY.

Start obs. time	Instruments	Duration	ObsID	Photons	Epoch zero	Spin frequency	Z_{1}^{2}/H	chance
		(ks)			(MJD)	(Hz)		prob.
2016-07-28	Swift/XRT	~ 35.4	00034632001	3846	57598	2.439842(1)	503/571	$< 10^{-11}$
2016-07-28	NuSTAR/FPM	~ 82.9	80102048002	32265	57598.5	2.4398409(2)	5820/6980	$< 10^{-11}$
2016-07-31	Swift/XRT	~ 17.9	00034632002	424	57600.2	2.43983(2)	28.6/47.6	$5.4 imes10^{-7}$
2016-08-05	NuSTAR/FPM	~ 127.0	80102048004	40275	57606.0	2.4398219(1)	7670/9310	$< 10^{-11}$
2016-08-06	XMM/pn	~ 20.1	0741732601	25530	57606.6	2.4398214(8)	7070/7990	$< 10^{-11}$
2016-08-09	Swift/XRT	~ 57.6	00034632007	1376	57606.6	2.439814(2)	151/177	$< 10^{-11}$
2016-08-09	Swift/XRT	~ 5.9	00034632008	339	57610.25	2.43979(3)	64.5/79.9	$< 10^{-11}$
2016-08-14	NuSTAR/FPM	$\sim \!\! 170.8$	80102048006	32473	57615.0	2.4397973(1)	5340/6320	$< 10^{-11}$
2016-08-15	XMM/pn	$\sim \! 27.9$	0741732701	26060	57616.0	2.4397945(6)	7020/7850	$< 10^{-11}$
2016-08-26	Swift/XRT	~ 70.5	00034632010	627	57627.0	2.439746(3)	49.4/54.1	4.0×10^{-8}
2016-08-30	XMM/pn	~ 32.5	0741732801	19904	57630.3	2.4397218(6)	4960/5540	$< 10^{-11}$
2016-08-30	Swift/XRT	$\sim \! 17.9$	00034632011	542	57630.4	2.439720(8)	78.1/105	$< 10^{-11}$
2016-08-30	NuSTAR/FPM	${\sim}166.5$	80102048008	20878	57631.0	2.4397154(2)	1810/1880	$< 10^{-11}$
2016-09-27	Swift/XRT	~ 6.4	00034632020	527	57658.05	2.43964(2)	72.7/99.9	$< 10^{-11}$
2016-12-12	NuSTAR/FPM	$\sim \! 183.3$	80102048010	2118	57735.0	2.4391775(8)	175/203	$< 10^{-11}$
2016-12-13	XMM/pn	~ 47.5	0762032801	4053	57735.5	2.439177(1)	954/1020	$< 10^{-11}$

Timing evolution

 It is naturally expected that the spin down rate gradually decreases with time after the glitch.

Spin down rate become larger with time

Radio

Archibald.et al(2018)

Joint xmm-newton &nustar spectrum

The left panel displays the fit to the composite model of **double blackbody (2BB) components**. The right panel presents the fit to the same model with an additional power-law component (2BB+PL)

						,	
Obse	erved Time	Aug.05/06	Aug.14/15	Aug.30/31	Dec. 12/13	3	
	a) _{N 11}	$1.58^{+0.13}$	$1.48^{+0.12}$	$1.28^{+0.13}$	$1.40^{+0.25}$		
	Γ	$0.56^{+0.23}$	$0.21^{+0.27}$	0.41 ± 0.23	$0.62^{+2.02}$	1	
	1 b) —	0.00 0.22	0.21 0.25	0.41 0.22	0.04 1 02	\rightarrow	
PO	$^{o}F_{\rm PO}$	0.023	0.010	0.020	0.002	_	
+	$kT_1 \; (\mathrm{keV})$	$0.32{\pm}0.02$	$0.33^{+0.03}_{-0.02}$	$0.36\substack{+0.04\\-0.03}$	$0.35^{+0.05}_{-0.04}$]	
BB1	R_1 (km)	$5.42^{+1.48}_{-1.02}$	$4.23^{+1.11}$	$2.70^{+0.93}_{-0.79}$	$1.61^{+0.81}_{-0.50}$]	
	b) $\mathbf{E}_{}$	-1.22	-0.92	-0.72	0.054	(
+	TBB_1	0.42	0.30	0.17	0.004		
BB_2	$kT_2 \;({ m keV})$	$1.02{\pm}0.01$	$1.04{\pm}0.01$	$1.04{\pm}0.01$	$1.13_{-0.05}$		
	$R_2 \ (\mathrm{km})$	$0.97{\pm}0.02$	$0.81^{+0.02}_{-0.01}$	$0.68^{+0.03}_{-0.02}$	$0.20{\pm}0.02$	Be:	st-fit paramete
	$^{b)}F_{BBo}$	1.51	1.16	0.82	0.096	DbsID Month	F_{1-10}
	$\chi^2_{\rm u}/{\rm d.o.f.}$	1.10/954	1.05/827	1.08/828	1.01/325		
	χ_{ν}			, 00		092010	$12.6\substack{+0.1\\-0.1}$
					1806 - 20	401021010	$10.5^{+0.1}_{-0.2}$
					1806 - 20	402094010	$8.9^{+0.1}_{-0.2}$
					1841 - 04 1000 + 14	401100010	$19.4_{-0.1}$
					1900+14 1900+14	401022010	$3.3_{-0.5}$ 4 $3^{+0.1}$
Th	o omissio	n with a w	ory hard n	on_thorm	1714 - 38	501007010	$1.7^{+0.1}$
			ery naru n	On-thermo		404080010	$38.1^{+0.5}_{-0.2}$
~~~	mnonont	ic alco cim	ilar ta tha	magnata	1708-40	405076010	$35.8^{+0.4}_{-0.1}$
CO	mponent	12 9120 2111	inar to the	magneta	<b>&gt;</b> $1048-59$	403005010	$9.9^{+0.1}_{-0.1}$
	niccion				0142 + 61	402013010	$122.0\substack{+0.1\\-0.1}$
en	nission				0142 + 61	404079010	$115.6\substack{+0.2\\-0.2}$
					0142 + 61	406031010	$108.3^{+1.1}_{-0.9}$
					0142 + 61	408011010	$107.8^{+0.4}_{-0.4}$
					2259+58	404076010	$30.4_{-0.1}$
					1818-15	400074010	$1.0_{-0.1}$
					1047 - 54 1547 - 54	405024010	$11 \ 1^{+0.1}$
					0501 + 45	9030024010	$36.2^{+0.3}$
					0501 + 45	404078010	$2.9^{+0.1}$



ers of SGR/AXP observations using the CBB+PL model with Suzaku and NuSTAR.

•	The emission with a very hard non-thermal
	component is also similar to the magnetar's
	emission



10 T 0.0											
0.096	ÖbsID Month	$F_{1-10}$	$F_{15-60}$	Unabsorb SXC	$\frac{1}{1}$ HXC	$N_{ m H} \ (10^{22}{ m cm}^{-2})$	kT (keV)	R (km)	$\Gamma_{ m s}$	$\Gamma_{ m h}$	$\chi^2_ u$ (dof)
01/325				S	uzaku observ	vations	. ,	. ,			
01/020	092010	$12.6^{+0.1}_{-0.1}$	33.7(4.4)	$6.3^{+0.9}$	$58.4^{+1.4}_{-1.4}$	6.7(3)	0.61(4)	1.8		1.62(5)	0.97(377)
1806 - 20	401021010	$10.5^{+0.1}_{-0.2}$	21.1(3.3)	$3.4^{+0.9}_{-0.8}$	$50.1^{+2.9}_{-2.6}$	5.5(5)	0.68(9)	1.1		1.51(9)	1.18 (171)
1806 - 20	402094010	$8.9^{+0.1}_{-0.2}$	27.1(4.3)	$5.9^{+1.0}_{-0.8}$	$42.2^{+1.8}_{-1.7}$	6.5(5)	0.65(6)	1.5		1.50(7)	1.22 (193)
1841 - 04	401100010	$19.4_{-0.1}^{+0.1}$	48.9(0.3)	$35.1^{+1.4}_{-1.4}$	$50.9^{+2.2}_{-2.1}$	2.5(1)	0.27(1)	21.1	3.41(10)	0.87(8)	1.22 (2087)
1900 + 14	401022010	$5.3^{+0.5}_{-0.5}$	20.6(5.5)	$4.6^{+0.1}_{-0.6}$	$25.0^{+3.2}_{-3.4}$	1.8(3)	0.57(2)	2.5		0.96(14)	1.13 (44)
1900 + 14	404077010	$4.3_{-0.1}^{+0.1}$	16.5(3.5)	$4.5_{-0.3}^{+0.3}$	$26.3^{+2.9}_{-2.5}$	1.9(1)	0.52(2)	3.0		0.78(9)	1.34(57)
1714 - 38	501007010	$1.7^{+0.1}_{-0.1}$	•••	$5.0^{+0.5}_{-0.3}$		3.5(1)	0.24(4)	15.7	3.25(8)		1.28(179)
1708 - 40	404080010	$38.1_{-0.2}^{+0.5}$	24.4(4.4)	$69.1^{+3.5}_{-3.3}$	$28.4^{+2.8}_{-2.7}$	1.3(1)	0.26(2)	14.2	3.48(9)	0.67(24)	0.98(394)
1708 - 40	405076010	$35.8^{+0.4}_{-0.1}$	24.4(4.0)	$55.0^{+4.0}_{-2.7}$	$33.4^{+2.1}_{-2.2}$	1.2(1)	0.30(1)	9.5	3.80(21)	1.14(16)	1.05(540)
1048 - 59	403005010	$9.9^{+0.1}_{-0.1}$	< 13.2	$12.3_{-0.2}^{+0.2}$	< 19.5	0.47(3)	0.45(1)	4.7	4.88(20)		1.32(78)
0142 + 61	402013010	$122.0_{-0.1}^{+0.1}$	35.1(6.4)	$185.1_{-0.7}^{+0.7}$	$38.3^{+2.3}_{-2.3}$	0.61(1)	0.28(1)	19.0	4.68(2)	0.24(7)	1.43(1725)
0142 + 61	404079010	$115.6_{-0.2}^{+0.2}$	26.2(5.8)	$176.8^{+1.5}_{-1.5}$	$27.1^{+\overline{2.3}}_{-2.2}$	0.62(1)	0.28(1)	18.6	4.71(4)	0.39(14)	1.15(1401)
0142 + 61	406031010	$108.3^{+1.1}_{-0.9}$	24.3(3.7)	$164.8^{+4.6}_{-4.4}$	$41.3^{+ar{4}.ar{1}}_{-4.0}$	0.63(3)	0.28(1)	18.0	4.65(10)	0.32(21)	1.08(1062)
0142 + 61	408011010	$107.8_{-0.4}^{+0.4}$	19.1(2.8)	$162.7^{+1.4}_{-1.4}$	$32.9^{+2.3}_{-2.2}$	0.60(1)	0.28(1)	17.9	4.81(4)	0.26(11)	1.37(838)
2259 + 58	404076010	$30.4_{-0.1}^{+0.1}$	< 10.1	$44.8^{+0.5}_{-0.5}$	< 14.9	0.55(1)	0.29(1)	7.8	4.85(4)	·	1.20(510)
1818 - 15	406074010	$1.0^{+0.1}_{-0.1}$		$1.4^{+0.1}_{-0.1}$		2.1(21)	1.61(6)	0.1			1.31 (83)
1547 - 54	903006010	$59.7_{-0.8}^{+0.9}$	110.2(5.2)	$50.6^{+1.7}_{-1.7}$	$158.7^{+3.3}_{-3.3}$	2.8(1)	0.67(2)	1.9		1.53(4)	1.29(140)
1547 - 54	405024010	$11.1_{-0.2}^{+0.1}$	13.5(3.3)	$17.5_{-0.6}^{+0.6}$	$23.4^{+2.5}_{-2.4}$	2.8(1)	0.62(1)	1.3		1.15(12)	1.23~(69)
0501 + 45	903002010	$36.2_{-0.2}^{+0.3}$	28.1(6.5)	$42.2_{-0.8}^{+0.6}$	$30.4_{-3.7}^{+\overline{4.0}}$	0.40(2)	0.49(1)	2.7	4.35(17)	0.10(35)	1.23(206)
0501 + 45	404078010	$2.9^{+0.1}_{-0.1}$	< 20.9	$3.8^{+0.3}_{-0.2}$	< 30.8	0.44(10)	0.30(3)	2.2	4.16(27)		0.92(77)
0501 + 45	405075010	$1.7^{+0.1}_{-0.1}$	< 16.2	$2.0^{+0.2}_{-0.2}$	< 23.9	0.24(13)	0.30(4)	1.6	4.20(45)		0.80(34)
0501 + 45	408013010	$1.7^{+0.1}_{-0.1}$	< 12.7	$2.3^{+0.1}_{-0.1}$	< 18.8	0.41(7)	0.26(2)	2.3	3.79(15)		0.96(367)
1833 - 08	904006010	$3.8^{+0.1}_{-0.1}$	17.6(4.5)	$7.9^{+0.3}_{-0.2}$	$35.6\substack{+9.3\\-8.8}$	9.6(5)	1.08(4)	0.7		-0.38(40)	1.37(167)
1647 - 45	901002010	$27.2_{-0.1}^{+0.1}$		$45.9^{+0.5}_{-0.5}$		1.7(1)	0.49(1)	<b>3.4</b>	4.39(6)		1.26(248)
1822 - 16	906002010	$18.2^{+0.4}_{-0.3}$	< 4.9	$18.5^{+0.5}_{-0.4}$	< 7.2	0.02(4)	0.54(2)	0.7	5.86(71)		1.41 (59)

### evolution





- The X-ray flux continuously decreased with time
- →Surface temperature was almost constant (at least until 6 months after the burst)
- $\rightarrow$ The emission size decreased.
- No significant no-thermal component was observed after December.



#### larger hotspot replaced by the magnetized atmospheric radiation

Obse	erved Time	Aug.05/06	Aug.14/15	Aug.30/31	Dec. 12/13			$a)_{NH}$	$1.50\substack{+0.06\\-0.05}$	$1.50\substack{+0.06\\-0.04}$	$1.47 \pm 0.06$	$1.83^{+0.13}_{-0.12}$
	$^{a)}N_{H}$	$1.58^{+0.13}_{-0.12}$	$1.48^{+0.12}_{-0.11}$	$1.28^{+0.13}_{-0.11}$	$1.40^{+0.25}_{-0.22}$		PL	$\Gamma$	$0.50\substack{+0.23\\-0.21}$	$0.18\substack{+0.26\\-0.25}$	$0.44{\pm}0.22$	$-0.17^{+0.96}_{-1.58}$
	Г	$0.56^{+0.23}$	$0.21^{+0.27}$	$0.41^{+0.23}$	$0.62^{+2.02}$		$^{c)}$ nsa	$kT_1$ (eV)	$\begin{array}{c} 0.021\\ 230\pm6 \end{array}$	$0.010 \\ 222^{+6}$	$\begin{array}{c} 0.021\\ 211\pm5 \end{array}$	0.002 $175^{+4}$
		-0.22	-0.21 - 0.25	-0.22	-1.83	1	+	$b)F_{nsa}$	0.40	0.35	0.28	0.12
PO	$^{o)}F_{\mathrm{PO}}$	0.023	0.010	0.020	0.002		BB	$kT_2$ (keV)	$1.03{\pm}0.01$	$1.04{\pm}0.01$	$1.03{\pm}0.01$	$1.10^{+0.04}_{-0.03}$
+ .	$kT_1$ (keV)	$0.32 \pm 0.02$	$0.33^{+0.03}$	$0.36^{+0.04}$	$0.35^{+0.05}$			R (km)	$0.95\substack{+0.01 \\ -0.02}$	$0.80\substack{+0.02\\-0.01}$	$0.70\substack{+0.01 \\ -0.02}$	$0.21\substack{+0.02\\-0.01}$
'   		× 1 1 18		a =a±0.93	± ± ± 0.81	1		$^{b)}F_{\mathrm{BB}}$	1.48	1.15	0.83	0.10
$BB_1$	$R_1$ (km)	$5.42^{+1.40}_{-1.22}$	$4.23^{+1.11}_{-0.92}$	$2.70^{+0.33}_{-0.72}$	$1.61^{+0.01}_{-0.52}$			$\chi^2_{ m  u}/{ m d.o.f.}$	1.11/955	1.05/828	1.08/829	1.00/282
1	b) $\mathbf{E}_{-}$	0 49	0.02	0.17	0.054			$^{a)}N_{H}$	$1.53\substack{+0.04\\-0.05}$	$1.54{\pm}0.05$	$1.51 \pm 0.06$	$1.88^{+0.11}_{-0.12}$
Ŧ	$r_{BB_1}$	0.42	0.00	0.17	0.004	•	$_{\rm PL}$	Γ	$0.49{\pm}0.22$	$0.16{\pm}0.25$	$0.42^{+0.23}_{-0.22}$	$-0.52^{+1.20}_{-1.41}$
$BB_2$	$kT_2 ~({\rm keV})$	$1.02{\pm}0.01$	$1.04{\pm}0.01$	$1.04{\pm}0.01$	$1.13^{+0.04}_{-0.05}$		. +	$^{b)}F_{ m PL}$	0.021	0.0096	0.020	0.001
-	D(1)		$0.01 \pm 0.02$	$a_{a} + 0.03$			$^{d)}$ nsmax	$kT_1$ (eV)	$245 \pm 6$	$238 \pm 5$	$225 \pm 6$	$187 \pm 5$
	$R_2 (\mathrm{km})$	$0.97{\pm}0.02$	$0.81^{+0.02}_{-0.01}$	$0.68^{+0.00}_{-0.02}$	$0.20{\pm}0.02$		+	$^{b)}F_{\rm nsmax}$	0.45	0.40	0.32	0.14
	b) $\mathbf{E}_{-}$	1 51	1 16	0.82	0.006		BB	$kT_2 \; (\mathrm{keV})$	$1.03 \pm 0.01$	$1.05 \pm 0.01$	$1.04 \pm 0.01$	$1.12 \pm 0.04$
	$r_{BB_2}$	1.01	1.10	0.62	0.090			$R_2 \ (\mathrm{km})$	$0.94\substack{+0.01\\-0.02}$	$0.80\substack{+0.01\\-0.02}$	$0.69\substack{+0.01\\-0.02}$	$0.21\substack{+0.01\\-0.02}$
	$\chi^2_{\rm u}/{\rm d.o.f.}$	1.10/954	1.05/827	1.08/828	1.01/325			$^{b)}F_{\mathrm{BB}_{2}}$	1.47	1.14	0.82	0.099
	$\mathcal{N}\mathcal{V}\mathcal{I}$							$\chi^2_ u/{ m d.o.f.}$	1.12/955	1.06/828	1.08/829	1.00/282



### Fermi data

**GAMMA-RAY** 



### Gamma ray : Fermi(LAT)



• As significant drop of photon flux was observed.





### Gamma-ray model



- The drop of GeV flux can be explained by the change of the emission size at the outburst.
- GeV gamma-rays from the outer gap (Cheng et al. 1986)
- The radiation power of the gap is on the order of :

$$L_{\gamma} \sim f_{gap} I_{GJ} \times f_{gap}^2 \Phi_a \sim f_{gap}^3 L_{sd}.$$

 $f_{gap} \equiv \frac{\delta\theta}{\theta_{pc}}.$ 

k.S cheng 1986

where fgap represents a fraction of the open magnetic field lines that penetrate the outer gap.





gamma-ray emission  
by curvature radiation 
$$E_{\gamma} = \frac{3}{4\pi} \frac{hc \Gamma_c^3}{R_c} \sim 1 \text{GeV} \left(\frac{f_{gap}}{0.3}\right)^{3/2} \left(\frac{B_s}{10^{12} \text{ G}}\right)^{3/4} \left(\frac{\Omega}{100 \text{ s}^{-1}}\right)^{5/4} \left(\frac{r}{\varpi_{lc}}\right)^{3/4}$$

• The gap fraction is determined by the condition of the photon-photon pair creation process  $E_X E_{\gamma} (1 - \cos \theta_{X\gamma}) \ge 2(m_e c^2)^2$ 

Where the energy of x-ray can be get from the observed data,

• the flux is proportional to fgap, 
$$L_{\gamma} \sim f_{gap} I_{GJ} \times f_{gap}^2 \Phi_a \sim f_{gap}^3 L_{sd}$$
.





### Gamma ray flux

states	Ex(kev)	Egamma(gev)	fgap	Lgamma(erg/s)
before	0.2	1.5	0.393	$1.4 \times 10^{35}$
after	1.0	0.2	0.1	$2 \times 10^{33}$

- We expect that gamma-ray flux after the outburst about two order of magnitude smaller than that before the outburst.
- At ~6 months after the outburst, the thermal emission is quickly decreasing, which causes the recovery of the GeV emission.



## conclusion



Different from other magnetars and high-B pulsars or the previous two glitches occurred in 2004 and 2007 of PSR J1119, there was a large glitch at X-ray outburst, and then caused a drastic spin-down until August 30,and recovery finished until the end of 2016.

➢ The X-ray pulsations can be described by the contribution from two hotspots (less than 10kev) , and the surface emission from the larger hotspot can be replaced by the magnetized atmospheric radiation.

We discussed the gamma-ray dropped photon flux by the theoretical model





## Thank you for listening







#### Magnetars







#### **Quick Summary**







#### e a spin-up glitch with $\Delta v = 1.40(2) \times 10^{-5}$ Hz $\Delta \dot{v} = -1.9(5) \times 10^{-12}$ Hz s⁻¹.



#### 1. Introduction

#### Glitch Mechanisms

- A *sudden release of the stress* built up in (i) solid crust or (ii) pinned vortices in the superfluid interior.
  - (i) Starquake model (Ruderman 1969)
  - Release the stress stored in solid cru
  - Rearrangement of the solid crusts.
  - Small glitch.







#### 1. Introduction

#### Glitch Mechanism

(2) Unpinned model (Alper et al. 1984)

- Proton and neutron superfluid at the core
- Formations of many vortices.
- Magnetic field are pinned at vortices (lower energy state of the system)
- Differential rotation between the crust and core produces the stress at pinned vortices.
- Sudden spin up due to *unpin* (large glitch).











the folded light curves in the soft X-ray (<</li>
 2.5 keV) and the medium X-ray (3– 10 keV) bands have no significant structure change with aligned pulsed peaks

 Single pulse profile <10keV with a marginal detection of the second peak.

 Pulse detection (marginal) >10keV just after the burst, but no detection after in Aug





#### observed on July 28/29 of 2016