

The evolution properties of the Crab pulsar

Speaker: Linli YAN (闫林丽)

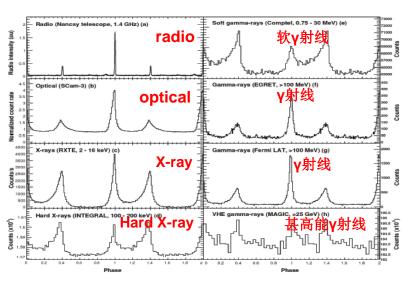
Main Collaborators: M. Y. Ge, F. J. Lu , S. J. Zheng, J. P. Yuan et al.

Email: yanlinli@ihep.ac.cn

Institute of High Energy Physics

2018-07-05

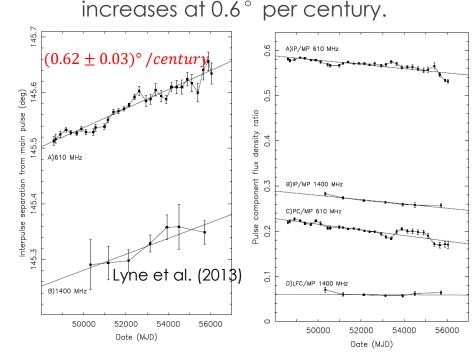
1. Introduction


2. Study results: the profile and spectrum evolution of the Crab pulsar

3. Summaries

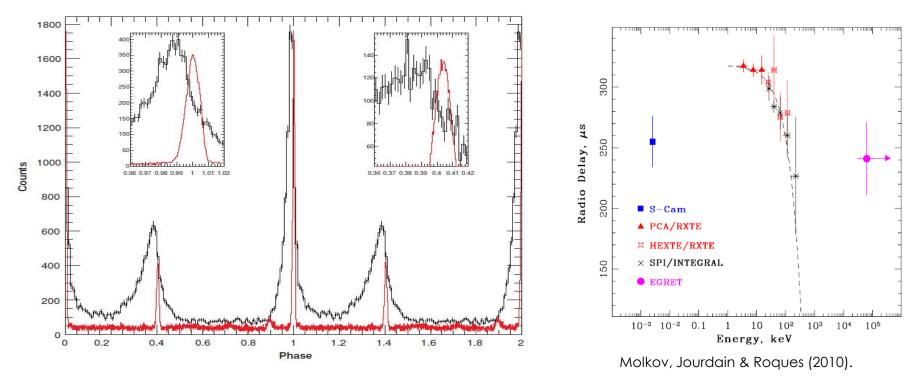
1. Introduction

Profile shape

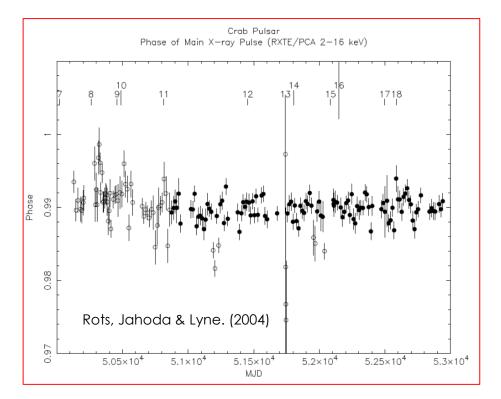

The pulse morphology of the Crab pulsar varies as a function of photon energy. (Abdo et al.2010, Ge et al. 2012)

The Crab pulsar's radio pulse

profiles change with time. (Lyne et al. 2013)

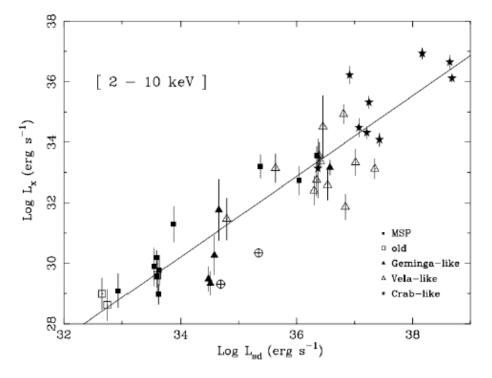

- The magnetic inclination angle α

What about the evolution trend of X-ray pulse profile?


Profile phase

The arrival times of the pulses are not aligned in phase at different wavelengths. (Kuiper et al. 2003; Rots, Jahoda & Lyne. 2004; Oosterbroek et al. 2008; Abdo et al. 2010, Molkov, Jourdain & Roques 2010).

➤The Crab pulsar's events in the 2 - 16 keV, X-ray leads the radio pulse by 0.0102 period in phase. (Rots, Jahoda & Lyne. 2004)



 a) What the evolution trend of the profile phase for the Crab pulsar?

b) Why there are some outliers?

Spectrum

- Flux evolution: decreasing 0.2% per year(Wilson-Hodge et al. 2011)
- Lx-Lsd

能段	样本数目(颗)	关系	能谱来源	
0.2-4.0 keV	22	$L_{\rm X} \propto L_{\rm sd}^{1.39}$	脉冲星+星云	
0.1-2.4 keV	27	$L_{\rm X} \propto L_{\rm sd}^{1.03}$	脉冲星+星云	
2.0-10 keV	39	$L_{\rm X} \propto L_{\rm sd}^{1.34 \pm 0.03}$	脉冲星+星云	
		$L_{\rm X} \propto L_{\rm sd}^{1.02\pm0.1}$	类Crab脉冲星+星z	
2.0-10 keV	14	$L_{\rm X} \propto L_{\rm sd}^{1.15}$	脉冲星	
2.0-10 keV	23	$L_{\rm X} \propto L_{\rm sd}^{1.35 \pm 0.2}$	脉冲星+星云	
		$L_{\rm X} \propto L_{\rm sd}^{1.2 \pm 0.08}$	脉冲星	
2.0-10 keV	19	$L_{\rm X} \propto L_{\rm sd}^{1.17 \pm 0.02}$	脉冲星	
2.0-10 keV	27	$L_{ m X}$ \propto $L_{ m sd}^{0.92\pm0.04}$	脉冲星	
0.3-10 keV		$L_{ m X}$ \propto $L_{ m sd}^{1.04\pm0.09}$		
0.1-300 GeV	29	$L_{\gamma} \propto L_{\rm sd}^{1.43^{+0.31}_{-0.23}} (L_{sd} < 3.72 \times 10^{35} {\rm erg s^{-1}})$	脉冲星	
		$L_{\gamma} \propto L_{\rm sd}^{0.2^{+0.27}}$ ($L_{\rm sd} > 3.72 \times 10^{35} {\rm erg s^{-1}}$)		

- What about this relationship for the Crab pulsar ?
- Verify different models ?

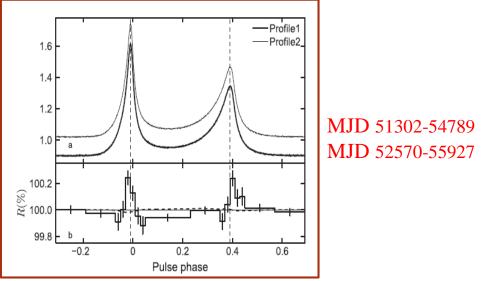
Crab pulsar:

Studies: (1) Pulse profile shape;

(2) Phase comparison;

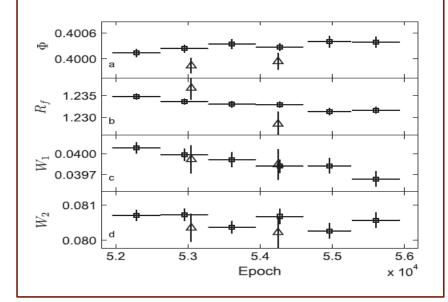
(3) Spectrum evolution;

Aims: constraining radiation models and the structure

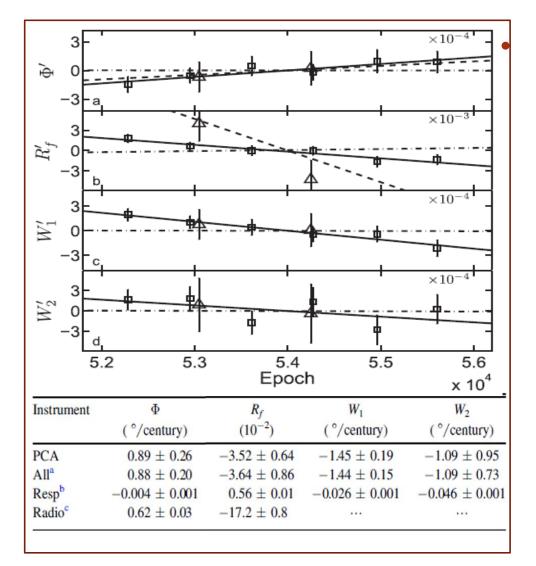

of magnetosphere.

2.1 Evolution of the shape for X-ray pulse profile

Observations: RXTE


- PCA (2-60keV)
- HEXTE (15-250keV) (2001.02.15—2011.12.31)
- Data reduction;
- Ephemeris: Using Jodrell Bank monthly ephemeris to fold pulse profile

The ratio of two pulse profiles :



• Parameterization of the X-Ray Profile

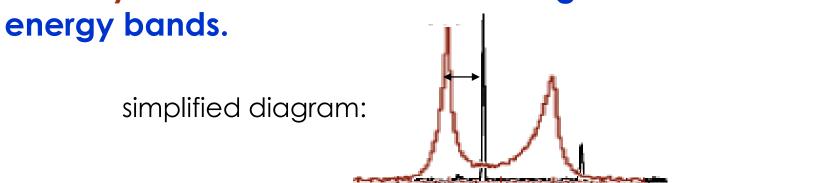
- Separation of two pulses
- Flux ratio of two pulses
- FWHM of two pulses

2.1 Evolution of the shape for X-ray pulse profile

Results:

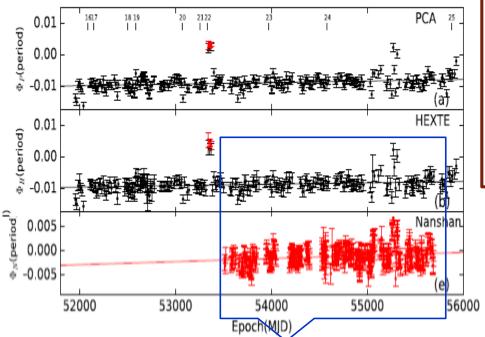
- The evolution trends in not from the aging of instruments.
- The evolution of separation for X-ray profiles has the same trend and rate as radio results.
- The evolution of flux ratio in Xray has the same rend but different rate as radio results.
- The FWHM of two pulses are decreasing with time but with large uncertainties.

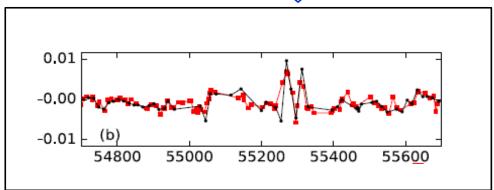
2.1 Evolution of the shape for X-ray pulse profile


Constraints:

- The X-ray and radio radiation regions may be relational because the evolution trends of separation in two bands are the same.
- > The evolution of pulse profile in X-ray may be from the increasing of inclination angle.

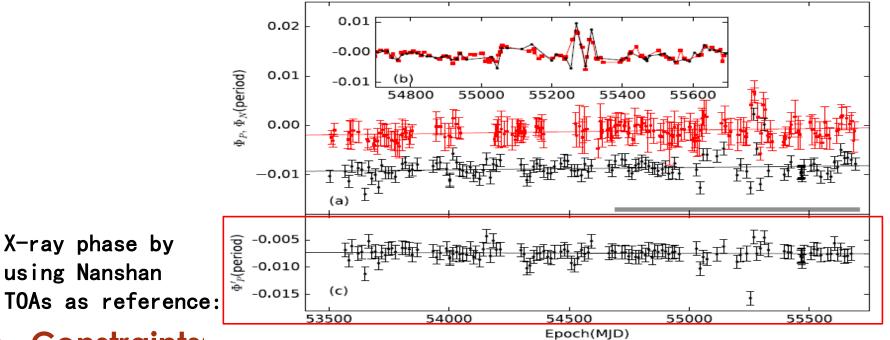
Ge, M. Y.; **Yan, L. L.**; Lu, F. J.; Zheng, S. J.; Yuan, J. P.; Tong, H.; Zhang, S. N.; Lu, Y., The Astrophysical Journal, 2016, 818(1), 48.


2.2 Evolution of the phase for X-ray pulse profile


- **Observations**:
 - RXTE (2001.02.15—2011.12.31) (PCA and HEXTE)
 - Nanshan radio telescope in Urumqi (2005.05.10—2011.05.07)
- Data reductions;
- **Ephemeris:** Jodrell Bank Observatory's monthly ephemeris;
- **Reference TOAs:** radio TOAs from Jodrell Bank Observatory
- To study : Phase evolution and timing noises in different energy bands.

2.2 Evolution of the phase for X-ray pulse profile

The change of phase with time:



- The phases in different energy bands have strong correlations;
- The radio phase from Nanshan changed with time obviously;
- To check evolution trend:
 - Clock of RXTE and Nanshan telescope no
 - > Ephemeris:
 - ✓ period、 proper motion、 ISM no
 - Reference TOAs yes!

2.2 Evolution of the phase for X-ray pulse profile

Red points: Nanshan Black points: PCA

Constraints:

> X-ray and radio emitting regions do not have significant relative changes.

> Timing noises in different bands are the same and they are not from the ISM.

Yan, L. L.; Ge, M. Y.; Yuan, J. P.; Zheng, S. J.; Lu, F. J.; Tuo, Y. L.; Tong, H.; Zhang, S. N.; Lu, Y.; Han, J. L.; The Astrophysical Journal, 2017, 845(2), 119.

2.3 Evolution of the spectrum

• Observations:

- > RXTE (2001.02.15—2011.12.31)
- > FGST (2008.11.01—2017.08.01)

PCA: 5-60keV HEXTE: 15-250keV LAT: 0.1-300 GeV

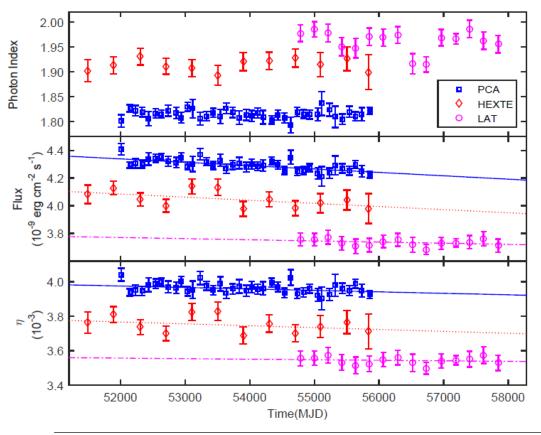
- Data reduction;
- Fitting spectrum
 - subtract PWN and nebula background
- To study:
 - Photon index and flux evolution;
 - The relation of High energy luminosity and spin down power

X-ray:

$$\frac{dN}{dE} = e^{-N_{\rm H}\sigma(E)} \times N_0(E)^{-\Gamma} \quad \text{counts cm}^{-2} \,\text{s}^{-1} \,\text{keV}^{-1}$$

 γ -ray:

$$\frac{dN}{dE} = N_0(E_{GeV})^{-\Gamma} e^{-E/E_c} \quad \text{counts cm}^{-2} \,\text{s}^{-1} \,\text{MeV}^{-1}$$


$$\bigcup$$

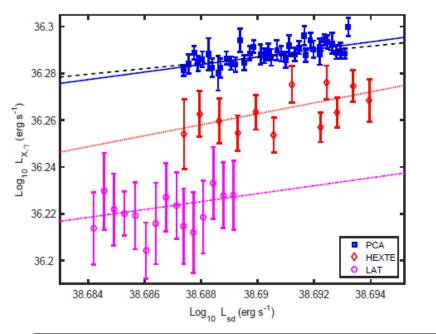
 $L_{X,\gamma} = 4\pi d^2 f_{X,\gamma} F_{X,\gamma}$

Spin down power: Lsd

$$-\dot{E} = \frac{dE}{dt} = -\frac{d}{dt}(\frac{1}{2}I\Omega^2) = -I\Omega\dot{\Omega} = \frac{4\pi^2 I\dot{P}}{P^3},$$

2.3 Evolution of the spectrum

The change of spectrum parameters with time:


仪器	能量范围	流量(erg cm ⁻² s ⁻¹)		能量	能量转换效率η		
		Rate (10 ⁻¹⁴ /day)	Intercept (10 ⁻⁹)	Rate (10 ⁻⁹ /da	y) Intercept (10^{-3})		
PCA	5–60 keV	-2.4 ± 0.4	4.3 ± 0.01	-8.5 ± 3.8	4.0 ± 0.01		
HEXTE	15–250 keV	-2.3 ± 1.8	3.1 ± 0.04	-11.0 ± 16.1	$5 2.9 \pm 0.03$		
LAT	0.1-300 GeV	-0.8 ± 0.7	1.3 ± 0.01	-3.1 ± 6.3	1.2 ± 0.01		

- X-ray flux decreased with time;

 $\eta_{X,\gamma} = \frac{L_{X,\gamma}}{L_{sd}}$ decreased with time
 but with large uncertainties.
- In gamma-ray, the evolution trend are not obvious.

2.3 Evolution of the spectrum

Lx, y vs Lsd

> $L_x \propto L_{sd}^{1.6\pm0.3}$, which is well consistent with some previous studies(such as Vink et al. 2011).

$$L_{sd}^{(OG)} = 3.8 \times 10^{31} B_0 (G)^2 P(s)^{-4} \text{erg s}^{-1}$$

$$L_{X,th}^{(OG)} = 5.5 \times 10^{-4} (\frac{\tan \alpha}{\tan 55^\circ})^4 B_{012}^{0.13} P_{-1}^{-0.8} L_{sd}^{(OG)}$$
Cheng et al. (1998)
$$L_{X,th}^{(OG)} \propto L_{sd}^{(OG)^{1.2}}$$

Group	Instrument		Parameter1		Parameter2	m	$Log_{10} n$	ρ
1	PCA	$5-60\mathrm{keV}$	L_X	vs.	L_{sd}	1.6 ± 0.3	-26.1 ± 10.4	0.69
2	HEXTE	$15-250\mathrm{keV}$	L_X	vs.	L_{sd}	2.3 ± 1.5	-54.4 ± 56.1	0.59
3	\mathbf{LAT}	$0.1 – 300 \mathrm{GeV}$	L_{γ}	vs.	L_{sd}	1.7 ± 1.4	-29.7 ± 54.1	0.30

Yan, L. L.; Ge, M. Y.; Lu, F. J. ;Zheng S. J. ; Tuo Y. L. Song L. M. Qu J. L. Li Z. J. The Astrophysical Journal , 2018. Under Reviewing

3. Summaries

- (1) The evolution trend of X-ray profile for the Crab pulsar is similar with radio results and may be from the increasing of inclination angle.
- (2) The X-ray phases are constant with time, so X-ray and radio emitting regions do not have significant relative changes and timing noises are not from the ISM.
- (3) The X-ray flux decreased with time, and the X-ray luminosities in 5-60 keV with spin down power have a relation $L_x \propto L_{sd}^{1.6\pm0.3}$, and the prediction of outer gap model in Cheng et al 1998 is consistent with observations.