

The hour timescale GeV flares of PSR B1259-63 in 2017 (2018, ApJ, in press, arXiv:1804.09861)

> P.H. Thomas Tam 譚栢軒 SYSU中山大學 Yudong Cui, Partha Pal, Xinbo He (SYSU)

Gamma-ray binaries

Currently known high-mass gammaray binaries

Dubus (2015)

name	binary components		$P_{\rm orb}$ (d)	HE	VHE	refs (\star)	notes	
(high-mass) gamma-ray binaries								
PSR B1259-63	pulsar	Be	1236.7	1	~	[12, 13]	47.7 ms	
HESS J0632+057	?	Be	315		\checkmark	[14, 15]		
LS I $+61^{\circ}303$?	Be	26.5	\checkmark	\checkmark	[16, 17]	magnetar ?	
1FGL J1018.6-5856	?	0	16.6	\checkmark	\checkmark	[18, 19]		
LS 5039	?	0	3.9	\checkmark	\checkmark	[20, 21]		

Currently known high-mass gammaray binaries

Dubus (2015)

name	binary components		$P_{\rm orb}$ (d)	HE	VHE	refs (\star)	notes	
(high-mass) gamma-ray binaries								
PSR B1259-63	pulsar	Be	1236.7	\checkmark	\checkmark	[12, 13]	47.7 ms	
HESS J0632+057	?	Be	315		\checkmark	[14, 15]		
LS I $+61^{\circ}303$?	Be	26.5	\checkmark	\checkmark	[16, 17]	magnetar ?	
1FGL J1018.6-5856	?	0	16.6	\checkmark	\checkmark	[18, 19]		
LS 5039	?	0	3.9	\checkmark	\checkmark	[20, 21]		
LMC P3	?	О	~10	~	~			
PSR J2032+4127	pulsar	Be	50 years		GeV pulsation			

Currently known high-mass gammaray binaries

Dubus (2015)

name	binary components		$P_{\rm orb}$ (d)	HE	VHE	refs (\star)	notes		
(high-mass) gamma-ray binaries									
PSR B1259-63	pulsar	Be	1236.7	\checkmark	\checkmark	[12, 13]	47.7 ms		
HESS J0632+057	?	Be	315	1	\checkmark	[14, 15]			
LS I $+61^{\circ}303$?	Be	26.5	\checkmark	\checkmark	[16, 17]	magnetar ?		
1FGL J1018.6-5856	?	О	16.6	\checkmark	\checkmark	[18, 19]			
LS 5039	?	0	3.9	\checkmark	\checkmark	[20, 21]			
LMC P3	?	О	~10	~	~				
PSR J2032+4127	pulsar	Be	50 years			GeV pu	lsation		

PSR B1259-63/LS 2883

- comprising of a pulsar and an Oe star, at d-2.3 kpc
- orbital period: 3.4 years
- Interaction between the stellar wind/disk and the pulsar wind => non-thermal radiation close to periastron

Sushch & van Soelen (2017)

Takata +(2017)

2011 GeV flares repeat in 2014 in similar orbital phase

2011 GeV flares repeat in 2014 in similar orbital phase

The orbital phase where GeV emission occurs

Dubus (2013)

News from 2017 periastron

spectrum does not change!

clearly occurs at different orbital phase

Some flares may be even as short as a few minutes!

Johnson et al. (arXiv:1805.03537)

No obvious correlated X/γ activities in 2017 correlated X/γ activities in 2014 (Tam+ 2015)

No obvious correlated X/γ activities in 2017 correlated X/γ activities in 2014 (Tam+ 2015)

but bad data coverage ...

A AVALANA AVALANA

- Models predicting IC/synchrotron at GeV cannot explain the GeV flares delayed compared to X-rays (e.g., Tam+ 2015)
- Models based on geometrical effects (Doppler boost, e.g., Kong+2012)
- Models predicting smooth(1-5 day) GeV emission
- Accretion-disk model (Yi & Cheng 2017)

- Models predicting IC/synchrotron at GeV cannot explain the GeV flares delayed compared to X-rays (e.g., Tam+ 2015)
- Models based on geometrical effects (Doppler boost, e.g., Kong+2012)
- Models predicting smooth(1-5 day) GeV emission
- Accretion-disk model (Yi & Cheng 2017)

- Models predicting IC/synchrotron at GeV cannot explain the GeV flares delayed compared to X-rays (e.g., Tam+ 2015)
- Models based on geometrical effects (Doppler boost, e.g., Kong+2012)
- Models predicting smooth(1-5 day) GeV emission
- Accretion-disk model (Yi & Cheng 2017)

- Models predicting IC/synchrotron at GeV cannot explain the GeV flares delayed compared to X-rays (e.g., Tam+ 2015)
- Models based on geometrical effects (Doppler boost, e.g., Kong+2012)
- Models predicting smooth(1-5 day) GeV emission
- Accretion-disk model (Yi & Cheng 2017)

- Models predicting IC/synchrotron at GeV cannot explain
 the GeV flares delayed compared to X-rays (e.g., Tam+ 2015)
- Models based on geometrical effects (Doppler boost, e.g., Kong+2012)
- Models predicting smooth(1-5 day) GeV emission
- Accretion-disk model (Yi & Cheng 2017), no evidence for pulsar timing change due to disk torque (Yi & Cheng 2018)

Summary

- The GeV flares from PSR B1259-63 are a major unresolved phenomenon among binary studies
- Every time Fermi/LAT sees GeV flares since launch, in 2011, 2014 & 2017
- The flares are clearly delayed compared to other wavelengths
- The 2017 flaring period consists of short-lived but powerful GeV flares on time scales of down to hours/minutes
- What can we expect next?