

MSP Binary in *Fermi* Era -X/gamma-ray properties of BW/RBs-

Jumpei Takata

(Huazhong University of Science and Technology, China)

华中科技大学

On behalf of

Ray Li, (MSU, USA), , J. Lee, C.Y. Hui (CNU, Korea), C.W. Ng, K.S. Cheng (HKU,HK) A.K.H. Kong (NTHU, Taiwan), P.H.T. Tam (SYSU, China), X. Hou (YAO, China), L.C.C. Lin (CHEA, Korea)

Outlines

- 1. **Black widow** and **Redback** millisecond pulsars
- New MSP binaries in *Fermi*-Era
- BWs/RBs candidate at *Fermi* unidentified sources
- 2. X-ray/gamma-ray emissions of BWs/RBs
- Magnetosphere
- Cold relativistic pulsar wind
- Inter-binary shock

Formation of MSPs

(Http://astronomy.swin.edu.au/cosmos/P/Pulsar+Evolution)

Intra-binary shock

- In 1988, the first eclipsing MSP PSR B1975+20 (Fruchter et al.)
- In 1990s, high-energy emission from intra-binary shock of MSP binary was discussed by several groups (Harding & Gaisseer 1990; Arons & Tavani 1993)
- In 2003, the first evidence of intra-binary shock emission
	- $-$ -- $-$ X-ray emission from PSR B1957+20 (Stappers et al. 2003)

MSPs in *Fermi***-Era**

- About a half of gamma-ray pulsars is MSPs.
	- \triangleright Deep radio pulsar search at Fermi unidentified source.
	- \triangleright Many compact MSP binary systems (P_{orb} <1day)
		- **Black widow** and **Redback**

BW and RB MSPs

- $P_{\rm orb}$ < 1 day.
- **Radio eclipses** due to the evaporating material from the companion.
- **Black Widow** (~12)
	- very low mass (semi) degenerate companion $(<0.05M_o)$
- **Redback** (~8)
	- $>0.1M_{\odot}$ non-degenerate (G/M type) or degenerate companion

Candidate at *Fermi*-UNID sources

Candidates

- 2FGL J2339.6-0532 (Kong et al. 2011)=PSR J2339-0533
- 2FGL J1311.7-3429 (Romani 2012) = PSR J1311-3430
- 1FGL J0523.5-2529 (Strader+ 2014)
- 2FGL J2039.6-5620 (Romani 2015; Salvetti+ 2015)
- 3FGL J1544-1125 (Bogdanov & Halpern 2015)
- 3FGL J1048.6+2338(Deneva+ 2016)= PSR J1048+2339 $\begin{array}{ccc} \bullet & & \bullet \\ \bullet & & \end{array}$ $20($ Denera⁺ 2010) **i** DIV 010 to $\frac{20}{9}$
- $3FGL$ J0212.1+5320 (Li+2016; Linares+2017) 20 (LI⁺ 2010, LIIIaIes⁺ 2017)
- 3FGL J0838.8-2829 (Halpern+ 2017)
- 3FGL J0954.8–3948 (Li et al. 2018) 8 (Li et al. 2018) ²³⁴ eters change to *^X* = 0*.*8 *±* 0*.*5 and *F*0*.*310keV =
- See also Hui+ 2015 and Salvetti+ 2017 for other candidates

• New BW and RB enable us to do a detail study of the high-energy emission from the MSP binary

2. X-ray/gamma-ray emissions of BWs/RBs

2-1 X-ray emission (see Takata et al. 2012) :

- 1. Magnetosphere -- synchrotron process
- 2. Heated polar cap $(\sim 10^6 K)$
- 3. Intra-binary shock -- synchrotron process

L_x vs. L_{sd} (Lee et al. 2018)

• **BWs** : Heated polar cap emission dominates for lower spin down pulsar. (see Gentile et al. 2013 for spectral analysis)

 \rightarrow no pulsed emission has been confirmed yet.

RBs: Shock emission dominates. \rightarrow X-ray spectrum is well fitted by a power law function.

 L_x vs. L_{sd} (Color : model)

Blue: Total Red: Heated PC

X-ray orbital modulation: Doppler boosting

variation. enough to measure the orbital **BWs**: Only PSR B1957+20 is bright \mathbf{b} factor by balancing between the synchrotron loss time scale and the acceleration time scale, yielding the maximum Lorentz factor ^e*c*4/(4*e*3*B*s)]1/2, where *^B*^s represent the magnetic field strength just after the shock. We assume the minimum Lorentz V_i

7 \rightarrow Shock wraps the companion. we apply $\frac{1}{\sqrt{2}}$ culation is insensitive to the minimum Lorentz factor. We obtain

5 \rightarrow Some sources show double peak **RBs**: Peak at around SUPC \mathbb{R}^n shows the results of \mathbb{R}^n GeV gamma-ray bands. Here, we assume the accelerated particles \mathcal{I} our model, the shock wraps the pulsar and because t shocked pulsar wind has a finite velocity, the X-ray orbital modulation can be explained by Doppler b oute souters show goudie p noon wraps inc

INFC Λ Λ INFC

^{1.00}
Phase

 1.25

 1.50 1.75 2.00

(Kong et al. 2017, 2018) PSR J2129–4029 in the 3–40 keV band. Phase 0.25 corresponds to the

 0.75

6.0 14
 50.0 10
 50.0 10

 16

40.0

 $0.4 -$

 $0.2 + 0.00$

 0.25

 0.50

BW: PSR B1957+20

Very hard X-ray spectrum

RB : Synchrotron emission from the inter-binary shock

- A single power law spectrum extends above 70keV.
- A very hard photon index Γ =1-1.3
	- Power law index of energy distribution of the shocked pulsar wind : $p \sim 1.5$

 f_{α} \overline{v} ⁴⁸⁹ 0*.*3873279 d (Figure 3). As we have mentioned in *§*3, the ⁴⁹⁰ X-ray counterpart was not detected in every *Swift*/XRT Ω , 2017 Ω ¹⁰ and Liet Ω , 2019 keV (see Takata et al. 2014, Li eta l. 2014, Kong et al. 2017, 2018, and Li et al. 2018)

2-2 Gamma-ray emission :

- 1. Magnetosphere (GeV)
	- \rightarrow Curvature radiation
- 2. Relativist cold pulsar wind (GeV)
	- \rightarrow Inverse-Compton scattering
- 3. Intra-binary shock

 \rightarrow Inverse-Compton scattering (TeV)

• Spectra observed by *Fermi* are well described by the power law $+$ exponential cut-off → Magnetospheric emission dominates \mathbf{b} and and we determine the maximum Lorentz the maximum \mathbf{I}

Orbital modulation of gamma-rays

- Three candidates:
	- PSR B1957+20 (Wu et al. 2012)
	- PSR J1311–3430 (Xing and Wang 2015)
	- 3FGL J2039.6-5618 (Ng et al. 2018)
- They are **brighter at around INFC**.
- The **cold-relativistic pulsar** wind produces the GeV gamma-rays by the inverse-Compton process.

 $(Ng \text{ et al. } 2018)$

 $\overline{10}$

Orbital Phase

 $\overline{1.5}$

 $\overline{0.5}$

Summary

- *Fermi* increases the population of BWw and RBs.
- X-ray properties of BWs and RBs show some differences.
	- -- Heated polar cap emission is important for BWs.
- Shock acceleration produces a very hard energy distribution of the particles.

 -- we need MeV telescope to determine the maximum energy of the particles.

- X-ray orbital modulation shape indicates the shock wraps the pulsar for the **RB**
	- -- Magnetized stellar wind?
- The magnetospheric emission dominates in GeV, but IC scattering of the cold-relativistic pulsar wind also contributes for some systems.

Future works

- How many RB/BW populations ? \rightarrow *Fermi* unidentified source
- \rightarrow A deep search by FAST
- Formation process \rightarrow RB are BW are evolutionally connected?
- Destiny
- \rightarrow Isolate MSP ?
- \rightarrow Ultra compact MSP binary?
- \rightarrow Merger?

