Leaked GeV CRs from a Broken Shell: Explaining 9 Years of Fermi-LAT Data of SNR W28

崔昱东(Yudong Cui), Paul Yeung, 谭柏轩(Thomas Tam), Gerd Pühlhofer

中山大学(Sun Yat-sen U)

SNR W28 Radio & X-ray

D~ 2kpc, with a radius of 13pc

~1keV 1Msun hot gas, ionization age ~>10 kyr, Zhou et. Al. 2016

~0.5keV 25Msun hot gas, ~ 30 kry, low elemental abundance. Zhou et al 2016

SNR W28 Masers

 $\label{eq:clumps} Clumps \sim 10^{3\text{-}5} \ \text{cm}^{\text{-}3}$ Interclump medium $\sim 5 \text{cm}^{\text{-}3}$

Masers as The shock-MC encounter evidence

& evidence of ionized MC by leaked <1GeV CRs

DCO⁺/HCO⁺ abundance ratios, with IRAM 30m telescope, by Vaupre2014, A&A,568, A50;

NH₃ lines, with Mopra radio telescope, by Maxted2016MNRAS462..532M;

SNR W28 TeV & GeV

TeV CRs released in early stage diffuse Everywhere.

Part of the shock is stalled and the GeV CRs are leaking out.

SNR W28 TeV & GeV

GeV-TeV CRs released from the SNR W28

	MC-N $(5 M_4^a)$	MC-A (4.3 M ₄)	MC-B (6 M ₄)	MC-C (2M ₄)
		Damping		
SNR center	$13{ m pc}$	$35{ m pc}$	$31{ m pc}$	$27{ m pc}$
W28-North	$0{\sim}1{\rm pc}$	$37{ m pc}$	$29{ m pc}$	$28{ m pc}$
		Non-damping		
SNR center	$13{ m pc}$	$35{ m pc}$	28 pc	$27{ m pc}$
W28-North	$0{\sim}1{\rm pc}$	$33\mathrm{pc}$	$26{ m pc}$	$25{ m pc}$

Run-away CRs from shock upstream → dominating TeV band Leaked CRs from W28-North 12kyr ago → dominating GeV band Galactic CR sea at 5kpc from GC → dominating <10GeV band for 240ABC

SNR evolution

Assuming a typeIIP SN 8Msun scenario 6Msun ejecta mass

Expanding inside Interclump medium ~5cm⁻³

Old SNR→ Damping of the magnetic waves by neutrals at upstream. We use a Relationship from O'C Drury et al. 1996, Zirakashvili et al 2017.

Acceleration efficiency

CR acceleration at collisionless shock

Particles swept away by the downstream flow \rightarrow power-law $\Gamma \sim -2$. Particles escape from the upstream \rightarrow Exp cutoff E_{max} .

Trapping the CRs at the shock

Non-resonant instability → quickly amplify the magnetic turbulence in upstream This theory is well established in both numerical simulation and analytical approximation. (Bell 2004; Zirakashvili & Ptuskin 2008)

Run-away CRs VS Leaked CRs

CR spectra

Summary

CR distribution inside the SNR

