Measurement of the Iuminosity function of Fast Radio Bursts

Speaker: Rui Luo (PKU) Supervisor: Kejia Lee (PKU) Collaborators: Weiyang Wang (NAOC), D.R.Lorimer (WVU) & Bing Zhang (UNLV)

Outline

- Background of FRB science
 - Observational features
 - Expanding sample
 - Theoretical models
- Motivations
- Bayesian Framework
 - Likelihood function
- Measurements
 - Event rate density
 - Detection rates
- Summary

Observational Features

• What are Fast Radio Bursts?

short durations (0.1 – 20 ms) observed in radio band (400-800 MHz, L, S, C band)

Transients, prominent flux density (10 mJy – 130 Jy)

- More important features:
 - highly-dispersed single pulse
 - scattering and scintillation
 - polarization and Faraday rotation
 - repeatable: FRB 121102, FRB 180814.J0422+73 and else?

The 1st FRB

 "Lorimer" Burst, found in archival data of Parkes Pulsar Survey for SMC

Expanding sample

• Facilities with large field of view conduct FRB surveys

Canadian Hydrogen Intensity Mapping Experiment

ASKAP detections

• 24 detections from CRAFT survey

At Imc

CHIME detections

 13 detections, 2nd repeater was found in commissioning phase.

CHIME/FRB collaboration 2019a

CHIME/FRB collaboration 2019b

Verified FRBs

• 80+ FRBs by Mar. 2019

Data source: FRB catalog (Petroff et al. 2016) and ATNF pulsar catalog (Manchester et al. 2004)

Theoretical Models

• Stage I: 2007-2013 (Limited sample)

- BH evaporation (Rees 1977)
- Superconducting cosmic string (Cai et al. 2012a, b; Yu et al. 2014)
- Magnetar hyper flare (Popov & Postnov 2010, 2013)

• Stage II: 2013-2016 (Growing sample)

- Collapse: NS->BH (Falcke & Rezzolla 2014, Zhang 2014, Fuller & Ott 2015)
- Mergers: NS-NS (Totani 2013, Wang et al. 2016), WD-WD (Kashiyama et al. 2013), BH-BH (Liu et al. 2016, Zhang 2016), NS-BH (Mingarelli et al. 2015), NS-Asteroids (Geng & Huang 2015), WD-BH (Li et al. 2018)
- Synchrotron maser (Lyubarsky 2014)
- Stage III: 2016 now (Repeater finding)
 - Supergiant pulses (Cordes & Wasserman 2016, Connor et al. 2016)
 - NS-Asteroids (Dai et al. 2016), NS-WD (Gu et al. 2016)
 - Magnetar (Metzger et al. 2017, Waxman 2017, Beloborodov 2017)
 - Cosmic comb (Zhang 2017)

Motivations

• To reveal the FRB nature

Image Credits: LIGO/ESO

To investigate the detection rates of different radio telescopes

Image Credits: XAO/CSIRO/NRAO/FAST

Bayesian Framework

• Bayes' theorem:

 $\Pr(\Theta \mid D, H) = \frac{\Pr(D \mid \Theta, H) \Pr(\Theta \mid H)}{\Pr(D \mid H)}$

• The big recipe:

$$\phi(L)dL = \phi^* \left(\frac{L}{L^*}\right)^{\alpha} \exp\left(-\frac{L}{L^*}\right) d\left(\frac{L}{L^*}\right)$$

 ϕ^* is the characteristic volumetric rate density in units of Gpc⁻³ yr⁻¹

Bayesian Framework

 To normalize the selection biases from different widths of FRBs, we assume intrinsic width distribution follow log-Normal distribution

$$S_{\min} = \frac{S/N_0 T_{sys}}{G\sqrt{N_p BWw_o}} \qquad f_w(\log w_i) \sim \mathcal{N}(\mu_w, \sigma_w)$$

Normalized likelihood

• Likelihood: $\mathcal{L} = f(\log S, DM_E) = \frac{1}{N_c} \int_0^\infty f(\log S, DM_E, z) dz$

$$N_{\rm f} = \int_{\log S_{\rm min}}^{\infty} d\log S \iint f(\log S, \rm DM_{\rm E}, z) \, d\rm DM_{\rm E} \, dz$$

Joint PDFs:

 $f(\log S, DM_{\rm E}, z) = \iint f(\log S, DM_{\rm E}, z, DM_{\rm s}, \log \varepsilon) \, dDM_{\rm s} d\log\varepsilon$ $f(\log S, DM_{\rm E}, z, DM_{\rm s}, \log\varepsilon) = \phi(\log L) \cdot f_{z}(z) \cdot f_{D}(DM_{\rm h}|z) \cdot (1+z) \cdot f_{\rm s}(DM_{\rm src}) \cdot f(\log\varepsilon)$

$$f_z(z) = \frac{cr(z)^2}{H(z)} \frac{\mathrm{d}r}{\mathrm{d}z}$$

$$f(DM_{src}) = \begin{cases} const, \ 0 < DM_{src} \le 50 \text{ cm}^{-3} \text{ pc} \\ 0, & other \end{cases}$$

$$\log \varepsilon \propto \theta^2$$
$$f(\log \varepsilon) = \text{const}$$

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Consideration: Flat spectrum the width is referenced at $\Delta v = 1 \text{ GHz}$

DM of nearby host galaxies

DM distribution functions of different types of host galaxies

The sample we use

• 46 FRBs from 7 surveys

Survey	N _{FRB} ^a	Ω^b deg^2	T ^c hr	G ^d K/Jy	T _{sys} ^e K	BW ^f MHz	S/N ₀ ^g	$N_{\rm p}{}^{\rm h}$	Ref. ⁱ
PKS-SMC	2	0.556	490.5	0.69	28	288	7	2	[1]
HTRU&SUPERB	19	0.556	7357	0.69	28	338	10	2	[2]
PALFA	1	0.024	11503.3	0.7 ^j	30	322	7	2	[1]
GBTIM	1	0.055	660	2.0	25	200	8	2	[3]
UTMOST-SS	3	9	4320	3.0	400	16	10	1	[4]
CRAFT	20	160	3187.5	0.05	100	336	10	2	[5]

FRB	Sneak ^a	w(ms) ^b	F^{c}	DM ^d	DM _{Mw} ^e	DM _{ww} ^f	Survey	Reference
	Jy	ms	Jy ms	cm ⁻³ pc	$cm^{-3} pc$	$cm^{-3} pc$		
010212	0.05	24.20	6.10	1107.0	51.0	(7.0	DVG CMG	(1)
010312	0.25	24.30	6.10	275.0	51.0	67.0	PKS-SMC	[1]
010724	50.00	5.00	2.10	375.0	44.0	94.0	PKS-SMC	[2]
090625	1.14	1.92	2.19	899.5	31.7	25.5	HTRU	[3]
110214	27.00	1.90	54.00	168.8	31.1	21.1	HIRU	[4]
110220	1.30	5.60	7.28	944.4	34.8	24.1	HIRU	[5]
110523	0.60	1.73	1.04	623.3	43.5	33.0	GBTIM	[6]
110626	0.40	1.40	0.56	723.0	47.5	33.6	HTRU	[5]
110703	0.50	4.30	2.15	1103.6	32.3	23.1	HTRU	[5]
120127	0.50	1.10	0.55	553.3	31.8	20.6	HTRU	[5]
121002	0.43	5.44	2.34	1629.2	74.3	60.5	HTRU	[3]
121102	0.40	3.00	1.20	557.0	188.0	287.1	PALFA	[7]
130626	0.74	1.98	1.47	952.4	66.9	65.1	HTRU	[3]
130628	1.91	0.64	1.22	469.9	52.6	47.0	HTRU	[3]
130729	0.22	15.61	3.43	861.0	31.0	25.4	HTRU	[3]
131104	1.12	2.08	2.33	779.0	71.1	220.2	HTRU	[8]
140514	0.47	2.80	1.32	562.7	34.9	24.2	HTRU	[9]
150215	0.70	2.80	1.96	1105.6	427.2	296.4	HTRU	[10]
150418	2.20	0.80	1.76	776.2	188.5	325.5	SUPERB	[11]
150610	0.70	2.00	1.30	1593.9	122.0	122.9	SUPERB	[12]
150807	128.00	0.35	44.80	266.5	36.9	25.1	SUPERB	[13]
151206	0.30	3.00	0.90	1909.8	160.0	161.0	SUPERB	[12]
151230	0.42	4.40	1.90	960.4	38.0	37.8	SUPERB	[12]
160102	0.50	3.40	1.80	2596.1	13.0	21.8	SUPERB	[12]
160317	3.00	21.00	63.00	1165.0	319.6	394.6	UTMOST-SS	[14]
160410	7.00	4.00	28.00	278.0	57.7	56.7	UTMOST-SS	[14]
160608	4.30	9.00	38.70	682.0	238.3	310.3	UTMOST-SS	[14]
170107	22.30	2.60	57.98	609.5	35.0	25.2	CRAFT	[15]
170416	19.40	5.00	97.00	523.2	40.0	27.5	CRAFT	[15]
170428	7.70	4.40	34.00	991.7	40.0	27.4	CRAFT	[15]
170707	14.80	3.50	52.00	235.2	36.0	26.9	CRAFT	[15]
170712	37.80	1.40	53.00	312.8	38.0	26.5	CRAFT	[15]
170906	29.60	2.50	74.00	390.3	39.0	26.6	CRAFT	[15]
171003	40.50	2.00	81.00	463.2	40.0	35.4	CRAFT	[15]
171004	22.00	2.00	44.00	304.0	38.0	33.0	CRAFT	[15]
171019	40.50	5.40	219.00	460.8	37.0	26.3	CRAFT	[15]
171020	117.60	1.70	200.00	114.1	38.0	25.8	CRAFT	[15]
171116	19.60	3.20	63.00	618.5	36.0	37.5	CRAFT	[15]
171213	88.60	1.50	133.00	158.6	36.0	33.8	CRAFT	[15]
171216	21.00	1.90	40.00	203.1	37.0	28.7	CRAFT	[15]
180110	128.10	3.20	420.00	715.7	38.0	26.1	CRAFT	[15]
180119	40.70	2.70	110.00	402.7	36.0	37.9	CRAFT	[15]
180128.0	17.50	2.90	51.00	441.4	32.0	26.6	CRAFT	[15]
180128.2	28.70	2.30	66.00	495.9	40.0	28.3	CRAFT	[15]
180130	23.10	4.10	95.00	343.5	39.0	26.1	CRAFT	[15]
180131	22.20	4.50	100.00	657.7	40.0	26.9	CRAFT	[15]
180212	53.00	1.81	96.00	167.5	33.0	27.8	CRAFT	[15]
								[·]

Measurements

Posteriors of LF parameters

FRB luminosity function

LF with 2σ error: event rate distribution

Population

The cumulative event rate of FRB population

 $R_{\rm NS-NS} = 1540^{+3200}_{-1220} \,{\rm Gpc}^{-3} \,{\rm yr}^{-1}$ (GW170817, Abbot et al. 2017)

 $R_{\rm NS-BH} \sim 10 - 100 \,{\rm Gpc}^{-3} \,{\rm yr}^{-1}$

Flux – DM_E relation

- Discussion:
 - The two repeaters are low-luminosity FRBs

Detection rate

• The detection rate is as function of field of view (Ω) and sensitivity (S_{min})

Detection rate

• Rate Contour (detection number per day)

All sky rate

 $R(>S_{\min}) = 4\pi \int_0^\infty \frac{1}{1+z} \frac{r(z)^2}{H(z)} dz \int f_w(\log w_i) d\log w_i \int_{L_{\min}(w_o)}^\infty \phi(L) dL \int f_\varepsilon(\log \varepsilon) d\log \varepsilon$

Searching efficiency

Aperture (meter)

• Optimal scenario: 30m – 40 m dishes

Luo et al. 2019

Summary

- FRB luminosities range at least 2.5 order of magnitudes, the volumetric rate R~10^{2.4} — 10^{4.7} Gpc⁻³ yr⁻¹.
- FRBs population seems to have multiple classes, repeaters favor low-luminosity FRBs, high-luminosity FRBs can reach NS-NS merger rate.
- Both sensitivity and field of view should be taken into account for FRB search. CHIME lead the current FRB large-sample search, while FAST is promising to detect very distant sources.
- 30—40m radio dishes are optimal scenario to do FRB searching with single dishes.