Constrain the solar system acceleration using Pulsar Timing Array

Heng Xu (胥恒), 2019.06.27 Peking University Collaborators: Yanjun Guo (郭彦君), Kejia Lee (李柯伽), Nicolas Caballero

Outlines

- Introduction and motivation
- Methods and Analysis
- Results
- Discussion

Solar system dynamics

- Solar system planets, astroid and unknown objects (Champion et al, 2010; Guo et al, 2018; Caballero et al., 2018).
- Distant object in the outer solar system
 - planet Nine (Bartygin & Brown, 2016)
 - exotic objects
- Test of gravity model (Damour & Taylor, 1991, Weisberg & Huang, 2016).
- The choice of the inertial frame.
- Constrain the solar system barycenter (SSB) acceleration using period derivatives of pulsars (Zakamska & Tremaine, 2005).

Timing a clock in MW

• The observed period and period change rate of a clock is given by:

$$P^{\text{obs}} = P^{\text{int}} \left(1 + \frac{\mathbf{v} \cdot \mathbf{n}}{c} \right)$$
$$\dot{P}^{\text{obs}} = \dot{P}^{\text{int}} \left(1 + \frac{\mathbf{v} \cdot \mathbf{n}}{c} \right) + P^{\text{int}} \left(\frac{\mu^2 d}{c} + \frac{\mathbf{a} \cdot \mathbf{n}}{c} \right)$$

 The acceleration of SSB relative to distant clock (pulsars) could be measured by :

$$\frac{-a_{\odot} \cdot n}{c} = \frac{\dot{P}^{\text{obs}} - \dot{P}^{\text{Shk}} - \dot{P}^{\text{Gal}} - \dot{P}^{\text{int}}}{P}$$

- observed period derivative
- intrinsic period derivative (spin-down/up, orbital decay rate...)
- Shklovskii effect from transverse motion
- relative acceleration between pulsar and SSB in the Galactic potential.

Spin period

- Intrinsic period derivative is unknown.
- Search for systematic dependence of P/P on pulsar position

Orbital period

IPTA DR1

- 35 binary pulsars out of 49 MSPs
- 15 pulsars with precision of $\dot{P}_b/P_b < 10^{-18} \text{ s}^{-1}$.
- astrometric parameters: ra, dec, pmra, pmdec, px
- binary parameters: P_b, P_b, A1, e, m_c, i
- Other prior measurements:
 - px: VLBI, DM
 - m_c, i: optical observations, upper limits

Hierarchical Bayesian framework

• Timing parameter inference using Temponest (Lentati et al, 2014)

Upper limit of solar system acceleration

- all-sky upper limit of a/c: 1.9×10⁻¹⁹ s⁻¹
- 95% sky upper limit of a/c: 1.5×10⁻¹⁹ s⁻¹
- $a/c < (2 \sim 19) \times 10^{-20} \text{ s}^{-1} (10^{-20} \sim 100 \ \mu\text{m/s} \ /\text{yr})$

Analytic formula

$$\frac{-a_{\odot} \cdot n}{c} = \frac{\dot{P}_{b}^{\text{obs}} - \dot{P}_{b}^{\text{Shk}} - \dot{P}_{b}^{\text{Gal}} - \dot{P}_{b}^{\text{GR}}}{P_{b}} = \left(\frac{\dot{P}_{b}}{P_{b}}\right)^{\text{exc}} \rightarrow \sigma_{\text{exc}} \approx \sqrt{\sigma_{\text{obs}}^{2} + \sigma_{\text{Shk}}^{2}}$$

• error of observed \dot{P}_b/P_b $\sigma_{obs} \approx \frac{6\sqrt{10}P_b\sigma}{a_1\pi^2\sqrt{\dot{n}T^5}} \propto \frac{1}{\sqrt{T^5}}$

7×10⁻²¹ in 10yr

 error of Shklovskii effect induced P_b/P_b

$$f(\overrightarrow{a}_{\odot} | \overrightarrow{r}) = \frac{f(\overrightarrow{a}_{\odot})}{\prod_{i} f(a_{i})} \prod_{i=1}^{n_{\text{psr}}} f(a_{i} | \overrightarrow{r}_{i}) |_{a_{i} = \overrightarrow{a}_{\odot} \cdot \overrightarrow{n}_{i}}$$

Prediction

Applications

- point mass in the outer solar system
- constraint on Ġ/G
- Galactic acceleration of SSB and that of the Milky Way

Point mass in the outer solar system

point mass induced acceleration to SSB: a=GM/r²

• Planet Nine:
$$M_9 = 11.2 M_{\rm E} (\frac{a_{\odot}/c}{1.5 \times 10^{-19} \, {\rm s}^{-1}}) (\frac{d_9}{100 \, {\rm au}})^2$$
,

Constraint on Ġ/G

 The orbital period derivative could be used to set limit on G/G (Damour 1988; Damour & Taylor, 1991; Will 1993):

$$\left(\frac{\dot{P}_b}{P_b}\right)^{exc} \simeq -\frac{\dot{G}}{G} \left\{ 2 - 2 \left[\frac{m_p s_p + m_c s_c}{m_p + m_c} \right] - 3 \left[\frac{m_p s_p + m_c s_c}{m_p + m_c} \right] \right\}$$

- using all the pulsars: $\dot{G}/G=(-4.4\pm6.0)\times10^{-13}$ yr⁻¹ at 95% certainty.
 - Deller et al, 2008: G/G=(-5±26)×10⁻¹³ yr⁻¹
 - Zhu et al, 2018: Ġ/G=(-1±9)×10⁻¹³ yr⁻¹
 - Lunar Laser Ranging (Hofmann et al, 2010): Ġ/G=(-0.7±3.8)×10⁻¹³ yr⁻¹

 Difference of G/G above and below the Galactic plane: G/G=(-8.5±15.8)×10⁻¹³ yr⁻¹ at 95% certainty.

Constraint on Ġ/G

 The orbital period derivative could be used to set limit on G/G (Damour 1988; Damour & Taylor, 1991; Will 1993):

$$\left(\frac{\dot{P}_b}{P_b}\right)^{exc} \simeq -\frac{\dot{G}}{G} \left\{ 2+2\left[\frac{m_p s_p + m_c s_c}{m_p + m_c}\right] + 3\left[\frac{m_p s_p + m_c s_c}{m_p + m_c}\right] \right\}$$

• Using all the nuleare: $\dot{G}/G = (-4.4 + 6.0) \times 10^{-13}$ vr-1 at 95% cortainty.

 Difference of G/G above and below the Galactic plane: G/G=(-8.5±15.8)×10⁻¹³ yr⁻¹ at 95% certainty.

Galactic acceleration of SSB

	$a_X/c[10^{-18}~{ m s}^{-1}]$	$a_Y/c[10^{-18} \ { m s}^{-1}]$	$a_Z/c[10^{-18}~{ m s}^{-1}]$	$a/c[10^{-18} \text{ s}^{-1}]$	$lpha_G[^\circ]$	$\delta_G[^\circ]$
Our work	0.70 ± 0.05	0.01 ± 0.08	-0.05 ± 0.08	0.70 ± 0.05	271 ± 7	-30 ± 7
Titov & Krásná (2018)	0.78 ± 0.03	0.01 ± 0.04	-0.19 ± 0.04	0.80 ± 0.03	281 ± 3	-35 ± 3
Titov & Lambert (2016)	0.81 ± 0.16	-0.32 ± 0.19	-0.27 ± 0.20	0.91 ± 0.15	273 ± 13	-56 ± 9
MacMillan (2014)	0.82 ± 0.06	-0.32 ± 0.17	-0.27 ± 0.20	0.86 ± 0.06	267 ± 3	-11 ± 3
Titov & Lambert (2013)	0.98 ± 0.17	0.04 ± 0.12	0.03 ± 0.12	0.98 ± 0.17	266 ± 7	-26 ± 7
Xu et al. (2012)	0.79 ± 0.05	0.02 ± 0.06	0.41 ± 0.04	0.89 ± 0.06	243 ± 4	-11 ± 4
Titov et al. (2011)	0.97 ± 0.23	0.10 ± 0.20	0.12 ± 0.19	0.98 ± 0.23	263 ± 11	-20 ± 12

Summary

- We have constructed a hierarchical Bayesian framework to combine the timing data of and ensemble of pulsars and infer the SSB acceleration.
- We derive analytic formula for the sensitivity of (P
 b/Pb)^{obs} and (P
 b/Pb)^{Shk} using the Cramér-Rao bound, and make predictions to our method in the future use.
- We also discuss possible applications of the SSB acceleration, or the orbital derivative of binary pulsar, including: constraints on point mass around the solar system, study of the gravity theory,

