

FAST/Future Pulsar Symposium 9 August 28–30, 2020, Xiamen University, Xiamen

The investigation of secondary compact object in GW190814 with DDRMF model

Jinniu Hu

School of Physics, Nankai University SNP, Nishina Center, RIKEN

Kaixuan Huang, Jinniu Hu, Ying Zhang, and Hong Shen, arXiv: 2008.04491

30/08/2020

Massive Neutron stars

Annu. Rev. Astron. Astrophys. 54 (2016)401

PSR J1614-2230: 1.928±0.017 M_☉

P. B. Demorest, et al., Nature. 467(2010)108

E. Fonseca et al., Astrophys. J. 832, 167 (2016).

PSR J0348+0432: 2.01±0.04 M_☉

P. J. Antoniadis et al., Science 340, 1233232 (2013).

PSR J0740+6620: 2.14±0.10 M_{\odot}

H. T. Cromartie et al., Nat. Astron. 4, 72 (2020)

30/08/2020

The GW190814-2.6M $_{\odot}$ object

Masses in the Stellar Graveyard

ALF1

AP4

H4

MPA1 MS1

MS1b

NJL

OMC

WWF1

ntru

18

THE ASTROPHYSICAL JOURNAL LETTERS, 896:L44 (20pp), 2020 June 20 © 2020. The American Astronomical Society OPEN ACCESS

https://doi.org/10.3847/2041-8213/ab960f

30/08/2020

A heavy neutron star including the deconfined QCD matter

H. Tan, J. Noronha-Hostler, and N. Yunes, (2020), arXiv:2006.16296

V. Dexheimer, R.O. Gomes, T. Klähn, S. Han and M. Salinas, (2020), arXiv:2007.08493

A super-fast pulsar

N. B. Zhang and B.-A. Li, (2020), arXiv:2007.02513

V. Dexheimer, R.O. Gomes, T. Klähn, S. Han and M. Salinas, (2020), arXiv:2007.08493

A normal neutron star

Y. Lim, A. Bhattacharya, J. W. Holt, and D. Pati, (2020), arXiv:2007.0652

A black hole

I. Tews, et al., (2020), arXiv:2007.06057 F. Fattoyev, C. Horowitz, J. Piekarewicz, and B. Reed, (2020), arXiv:2007.03799

••• •••

Density-dependent CDFT

30/08/2020

B. Sun, W. H. Long, J. Meng, and U. Lombardo, Phys. Rev. C 78, 065805 (2008)

剧大

New DDRMF parameterizations

DD-LZ1

た

刮

The Lagrangian of DDRMF model

$$\begin{aligned} \mathcal{L}_{DD} &= \sum_{i=p, n} \overline{\psi}_i \left[\gamma^{\mu} \left(i \partial_{\mu} - \Gamma_{\omega}(\rho_B) \omega_{\mu} - \frac{\Gamma_{\rho}(\rho_B)}{2} \gamma^{\mu} \vec{\rho}_{\mu} \vec{\tau} \right) - \left(M - \Gamma_{\sigma}(\rho_B) \sigma - \Gamma_{\delta}(\rho_B) \vec{\delta} \vec{\tau} \right) \right] \psi_i \\ &+ \frac{1}{2} \left(\partial^{\mu} \sigma \partial_{\mu} \sigma - m_{\sigma}^2 \sigma^2 \right) + \frac{1}{2} \left(\partial^{\mu} \vec{\delta} \partial_{\mu} \vec{\delta} - m_{\delta}^2 \vec{\delta}^2 \right) \\ &- \frac{1}{4} W^{\mu\nu} W_{\mu\nu} + \frac{1}{2} m_{\omega}^2 \omega_{\mu} \omega^{\mu} - \frac{1}{4} \vec{R}^{\mu\nu} \vec{R}_{\mu\nu} + \frac{1}{2} m_{\rho}^2 \vec{\rho}_{\mu} \vec{\rho}^{\mu}, \end{aligned}$$

周大學

The density dependent coupling constants

for σ and ω mesons $\Gamma_i(\rho_B) = \Gamma_i(\rho_{B0}) f_i(x)$, with $f_i(x) = a_i \frac{1 + b_i (x + d_i)^2}{1 + c_i (x + d_i)^2}$, $x = \rho_B / \rho_{B0}$,

for ρ and δ mesons

$$\Gamma_i(\rho_B) = \Gamma_i(\rho_{B0}) \exp[-a_i(x-1)].$$

Density-dependent coupling constants

sity-depen	dent co	oupli	ing	cons	tan	ts			了度] 大	
200		DD-LZ1		DD2	DD-ME1	DD-ME2	DD-MEX	DDV	DDVT	DDVTD	
	$m_n[\text{MeV}]$ $m_r[\text{MeV}]$	938.900000 938.900000	m_n m_r	939.56536 938 27203	939.0000 939.0000	939.0000 939.0000	939.0000 939.0000	939.565413 938 272081	939.565413 938 272081	939.565413 938 272081	
	$m_{\sigma}[\text{MeV}]$	538.619216	m_{σ}	546.212459	549.5255	550.1238	547.3327	537.600098	502.598602	502.619843	
DD-ME I	$m_{\omega} [{ m MeV}]$	783.0000	m_{ω}	783.0000	783.0000	783.0000	783.0000	783.0000	783.0000	783.0000	
	$m_{ ho}[{ m MeV}]$	769.0000	$m_{ ho}$	763.0000	763.0000	763.0000	763.0000	763.0000	763.0000	763.0000	
DD-ME2	$m_{\delta}[\text{MeV}]$	10.001.400	m_{δ}	10 000001	10 4494	10 5200	10 2002	10 196060		980.0000 8.370000	
	$\Gamma_{\sigma}(0)$	12.001429	$\Gamma_{\sigma}(\rho_{B0})$ $\Gamma_{\sigma}(\rho_{B0})$	10.080081	10.4434	10.5396	10.7067	10.136960 12.770450	8.382863 10.087106	8.379269	
	$\Gamma_{\omega}(0)$ $\Gamma_{\rho}(0)$	15.150934	$\Gamma_{\omega}(\rho_{B0})$ $\Gamma_{\rho}(\rho_{B0})$	7.25388	7.6106	7.3672	7.2380	7.84833	7.697112	8.06038	
	$\Gamma_{\delta}(0)$		$\Gamma_{\delta}(\rho_{B0})$							0.8487420	
	$\rho_{B0} [\mathrm{fm}^{-3}]$	0.158100	$ ho_{B0}$	0.149	0.152	0.152	0.153	0.1511	0.1536	0.1536	
DD-LZ1	a_{σ}	1.062748	a_{σ}	1.357630	1.3854	1.3881	1.3970	1.20993	1.20397	1.19643	
	b_{σ}	1.763627	b_{σ}	0.634442	0.9781	1.0943	1.3350	0.21286844	0.19210314	0.19171263	
	c_{σ}	2.308928	c_{σ}	1.005358 0.575810	1.5342	1.7057	2.0671	0.30798197	0.27773566 1.00552817	0.27376859 1 10343705	
	a_{σ}	1.059181	a_{σ}	1.369718	1.3879	1.3892	1.3936	1.23746	1.16084	1.16693	
	b_{ω}	0.418273	b_{ω}	0.496475	0.8525	0.9240	1.0191	0.03911422	0.04459850	0.02640016	
DDVT	c_{ω}	0.538663	c_{ω}	0.817753	1.3566	1.4620	1.6060	0.07239939	0.06721759	0.04233010	
· ·	d_{ω}	0.786649	d_{ω}	0.638452	0.4957	0.4775	0.4556	2.14571442	2.22688558	2.80617483	
	$a_ ho$	0.776095	$a_{ ho}$	0.518903	0.5008	0.5647	0.6202	0.35265899	0.54870200	0.55795902	
	a_{δ}		a_{δ}			_				0.55795902	

30/08/2020

The saturation properties of SNM

	DD-LZ1	DD2	DD-ME1	DD-ME2	DD-MEX	DDV	DDVT	DDVTD
$\rho_{B0} [\mathrm{fm}^{-3}]$	0.1585	0.149	0.152	0.152	0.1518	0.1511	0.1536	0.1536
$E/A[{ m MeV}]$	-16.126	-16.916	-16.668	-16.233	-16.14	-16.097	-16.924	-16.915
$K_0[{ m MeV}]$	231.237	241.990	243.881	251.306	267.059	239.499	239.999	239.914
$E_{\rm sym}[{\rm MeV}]$	32.016	31.635	33.060	32.31	32.269	33.589	31.558	31.817
L[MeV]	42.467	54.933	55.428	51.265	49.692	69.646	42.348	42.583
M_n^*/M	0.558	0.563	0.578	0.572	0.556	0.586	0.667	0.667
M_p^*/M	0.558	0.562	0.578	0.572	0.556	0.585	0.666	0.666

刮

30/08/2020

Jinniu Hu@online

The Strong vector potentials

30/08/2020

副大

The stiffer EOSs will generate larger speeds of sound

data from: R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. 896, L44 (2020)

30/08/2020

The tidal deformabilities of neutron star

大

周

國南國大學

The properties of neutron star were investigated with DDRMF parameterizations.

The second object of GW190817 cannot be excluded as a neutron star consisting of hadron matter.

The precision measurements of tidal deformabilities of $2.0M_{\odot}$ neutron star will be much helpful to constrain the EOSs

The exotic phases in the core of neutron star will be further studied.