# Tests of conservation laws in post-Newtonian gravity with binary pulsars

Xueli Miao (缪雪丽), Junjie Zhao, Lijing Shao, Norbert Wex, Michael Kramer, Bo-Qiang Ma.

August 29, 2020



## Introduction

• Post-Newtonian (PN) limit: theory-independent.

At the 1PN order, the degree of violation in conservation laws is expressed via some specific parameterized post-Newtonian (PPN) parameters.

- Fully conservative theories:  $\alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0.$
- Semi-conservative theories: α<sub>3</sub> = ζ<sub>1</sub> = ζ<sub>2</sub> = ζ<sub>3</sub> = ζ<sub>4</sub> = 0. (Preferred frame, α<sub>1</sub>, α<sub>2</sub>, Shao & Wex (2012), Shao et al. (2013))
- Non-conservative theories: one or more of  $\{\alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4\}$  will be zero.

Will, C. M. 2018, Theory and Experiment in Gravitational Physics

# Introduction



• Pulsar timing  

$$t_{SSB} = t_{topo} + t_{corr} - \Delta D/f^{2} + \Delta_{R\odot} + \Delta_{S\odot} + \Delta_{E\odot} + \Delta_{RB} + \Delta_{SB} + \Delta_{EB} + \Delta_{AB}$$

Wex, N. 2014, arxiv:1402.5594 Lorimer, D. R.,& Kramer, M. 2005, Handbook of Pulsar Astronomy

For nonconservative gravity theories with the PPN parameter  $\zeta_2$ , there exists a self-acceleration for the center of mass of a binary system

$$a_{\rm cm}(t) = \frac{\zeta_2}{2} c T_{\odot} m_c \frac{q(q-1)}{(1+q)^2} \left(\frac{2\pi}{P_b}\right)^2 \frac{e}{(1-e^2)^{3/2}} \hat{\mathbf{e}}_{\rm p}(t) \,,$$

where  $T_{\odot}=\,GM_{\odot}/\,c^3\simeq 4.9254909 \mu s.$ 



Will, C. M. 1992, ApJ, 205, 861

The relation between  $\ddot{\nu}$  and  $\zeta_2$  is,

$$\frac{1}{\nu} \frac{\mathrm{d}^2 \nu}{\mathrm{d}t^2} = -\frac{\mathcal{A}_2}{c} \cos \omega \frac{\mathrm{d}\omega}{\mathrm{d}t}$$
$$\frac{1}{\nu} \frac{\mathrm{d}^3 \nu}{\mathrm{d}t^3} = \frac{\mathcal{A}_2}{c} \sin \omega \left(\frac{\mathrm{d}\omega}{\mathrm{d}t}\right)^2 \,,$$

where

$$\mathcal{A}_2 \equiv -\frac{\zeta_2}{2} c T_{\odot} \left(\frac{2\pi}{P_b}\right)^2 \frac{q(q-1)}{(1+q)^2} \frac{e}{(1-e^2)^{3/2}} m_c \sin i \,,$$

The latest bound on  $\zeta_2$  was obtained by Will in 1992. He used the second time derivative of the spin period ( $\ddot{P}$ ) of PSR B1913+16, and  $\zeta_2 < 4 \times 10^{-5}$  at 95% confidence level (C.L.).( $\ddot{P} = 4 \times 10^{-30} \, \mathrm{s}^{-1}$ )

Will, C. M. 1992, ApJ, 205, 861 Xueli Miao, et al. 2020, ApJ, 898, 69

# Our results

#### • Individual bound on $\zeta_2$

| Pulsar     |            | Method A             | Method B             |
|------------|------------|----------------------|----------------------|
| B2127+11C  | ÿ          | $3.1 \times 10^{-5}$ | $2.9 \times 10^{-5}$ |
| J1756-2251 | Ÿ          | $1.7 \times 10^{-4}$ | $1.8 	imes 10^{-4}$  |
| B1534+12   | Ÿ          | $4.5 	imes 10^{-4}$  | $8.1 \times 10^{-5}$ |
| B1913+16   | $\ddot{v}$ | $1.2 \times 10^{-3}$ | $8.4 	imes 10^{-4}$  |
| B1534+12   | $\ddot{v}$ | $1.9 \times 10^{-3}$ | $1.9 \times 10^{-3}$ |
| B1913+16   | Ÿ          | $4.1 \times 10^{-3}$ | $1.5 \times 10^{-3}$ |

Figure: The bounds on the absolute value of  $\zeta_2$  from individual binary pulsar systems at 95% C.L.. For PSR B1913+16, the  $\ddot{P} = 5.6 \times 10^{-29} \,\mathrm{s}^{-1}$ 

• Combined bound on  $\zeta_2$ 

 $|\zeta_2| < 1.3 \times 10^{-5}$ , with flat prior in  $\log_{10} |\zeta_2|$  (95% C.L.). Xueli Miao, et al. 2020, ApJ, 898, 69



Figure: Cumulative posterior distributions with two different choices of priors. Left is using the Method A, and right is using the Method B for  $\omega(t)$ .

Xueli Miao, et al. 2020, ApJ, 898, 69

# A full timing model with simulation data

Extending the Damour-Deruelle (DD) timing model we have

$$t = T + \Delta_{\mathrm{R}}(T) + \Delta_{\mathrm{E}}(T) + \Delta_{\mathrm{S}}(T) + \Delta_{\mathrm{A}}(T) + \Delta_{\zeta_{2}}(T).$$

The acceleration along the line of sight is

$$a_r(t) \equiv \hat{\mathbf{n}} \cdot \boldsymbol{a}_{cm}(t) = \mathcal{A}_2 \sin \left[ \omega_0 + \dot{\omega} \left( t - T_0 \right) \right] \,.$$

The displacement z(t) along the line of sight is determined via the relation  $\ddot{z} = a_r(t)$ . So after integration, we obtain

$$z(t) = \frac{\mathcal{A}_2}{\dot{\omega}^2} \left[ \sin \omega_0 + \delta \omega \cos \omega_0 - \sin \left( \omega_0 + \delta \omega \right) \right],$$

where  $\delta\omega\equiv\dot{\omega}(t-t_0)$ . The extra time delay of arrival of pulses can be described by,

$$\Delta_{\zeta_2} = z(t)/c \simeq z(T)/c \,.$$

Xueli Miao, et al. 2020, ApJ, 898, 69

We apply Taylor expansion to  $\Delta_{\zeta_2}$  with respect to  $T - t_0$ ,

$$\Delta_{\zeta_2}(T) = \frac{1}{2} \frac{A_2}{c} \sin \omega_0 (T - t_0)^2 + \frac{1}{6} \frac{A_2 \dot{\omega}}{c} \cos \omega_0 (T - t_0)^3 - \frac{1}{24} \frac{A_2 \dot{\omega}^2}{c} \sin \omega_0 (T - t_0)^4 + \dots$$

For the extra time delay that is caused by an apparent change in the spin frequency. we have  $-\Delta_{\zeta_2} = \delta \phi P = \delta \phi / \nu$ , and

$$\delta\phi = \frac{1}{2}\delta\dot{\nu} (T - t_0)^2 + \frac{1}{6}\delta\ddot{\nu} (T - t_0)^3 + \frac{1}{24}\delta\ddot{\nu} (T - t_0)^4 + \dots$$

We get the following relations

$$-\frac{\mathcal{A}_{2}\dot{\omega}}{c}\cos\omega_{0} = \delta\ddot{\nu}/\nu$$
$$\frac{\mathcal{A}_{2}\dot{\omega}^{2}}{c}\sin\omega_{0} = \delta\ddot{\nu}/\nu$$

Xueli Miao, et al. 2020, ApJ, 898, 69

(日本本語を本書を本書を、書、のなら)



Xueli Miao, et al. 2020, ApJ, 898, 69

æ

<ロ> <四> <ヨ> <ヨ>

|             | Method I             |                        | Method II.A             |                        | Method II.B          |                                     |
|-------------|----------------------|------------------------|-------------------------|------------------------|----------------------|-------------------------------------|
|             | $\zeta_2^{\rm crit}$ | $\ddot{\nu}(Hz^3)$     | $\zeta_2^{\text{crit}}$ | $\ddot{v}(Hz^3)$       | $\zeta_2^{\rm crit}$ | $\overline{\nu}$ (Hz <sup>4</sup> ) |
| B1534+12    | $1.2 	imes 10^{-6}$  | $-4.9 \times 10^{-31}$ | $1.2 	imes 10^{-6}$     | $-4.9 \times 10^{-31}$ | $1.2 \times 10^{-5}$ | $-2.0\times10^{-38}$                |
| J0737-3039A | _                    | -                      | $4.4\times10^{-5}$      | $2.3 	imes 10^{-27}$   | $3.4 \times 10^{-5}$ | $-3.2 \times 10^{-34}$              |
| J1756-2251  | $2.0\times10^{-6}$   | $5.3 	imes 10^{-29}$   | $1.1\times 10^{-5}$     | $2.9\times10^{-28}$    | $1.3 	imes 10^{-4}$  | $3.1 \times 10^{-36}$               |
| J1757-1854  | $1.0\times10^{-4}$   | $-2.8\times10^{-26}$   | $1.0\times10^{-4}$      | $-2.8\times10^{-26}$   | $1.7 \times 10^{-3}$ | $-1.7 \times 10^{-32}$              |
| B2127+11C   | $7.0 	imes 10^{-6}$  | $8.5\times10^{-29}$    | $8.0 	imes 10^{-6}$     | $9.7 	imes 10^{-29}$   | $7.0 	imes 10^{-3}$  | $5.5 	imes 10^{-35}$                |
| B1913+16    | -                    | -                      | $1.0 	imes 10^{-7}$     | $2.1 	imes 10^{-30}$   | $8.0 	imes 10^{-8}$  | $9.5 	imes 10^{-39}$                |

Figure: Critical values of  $\zeta_2$  for six binary pulsars with three different methods.

Xueli Miao, et al. 2020, ApJ, 898, 69



Figure: Changes in the  $\chi^2$  as a function of  $\zeta_2$  for PSR B1913+16.

Xueli Miao, et al. 2020, ApJ, 898, 69

# Summary

- We test conservation laws and give the parameter  $\zeta_2$  of PPN a new bound,  $|\zeta_2| < 1.3 \times 10^{-5}$ .
- For some binary pulsar systems,  $\overleftrightarrow{\nu}$  can give a stronger limit than  $\dddot{\nu}$  for  $\zeta_2.$
- We provide an extended timing model to test the effect of  $\zeta_2$ .

Xueli Miao, et al. 2020, ApJ, 898, 69

# Thank you!