SMALL GLITCHES AND ANTI-GLITCHES FROM NON-AXISYMMETRIC OSCILLATION MODES

GARVIN YIM Kavli Institute for Astronomy and Astrophysics, Peking University *g.yim@pku.edu.cn*

"Quakes: from the Earth to the Stars" Meeting Dream Field, FAST, Guizhou, 2023/05/22

CONTENTS

- PART I Introduction to gravitational waves
	- PART II Timing observations
- PART III The model (Yim & Jones, 2022; 2023)
	- PART IV Powering the oscillation modes
		- PART V Conclusion and outlook

Aim: To create a model to explain how small glitches and anti-glitches arise from non-axisymmetric neutron star oscillations.

PART I - INTRODUCTION TO GRAVITATIONAL WAVES

In electrodynamics, the acceleration of charged particles gives rise to electromagnetic waves

WHAT ARE GRAVITATIONAL WAVES?

- (starting from dipole radiation).
- waves (starting from quadrupole radiation).
- axisymmetric mass or current multipole moment:

1

▸ As an *analogy*, in gravitational physics, the acceleration of masses gives rise to gravitational

More specifically, gravitational waves are emitted whenever there is a time-varying non-

where (l) represents the l th time derivative and the angled brackets represents an average over many gravitational wave cycles. [Thorne (1980); Lindblom, Owen & Morsink (1998)]

$$
\dot{E}_{GW} = -\sum_{l=2}^{\infty} \sum_{m=-l}^{l} N_l \left\langle \left| \text{Mass multipole} \right|_{lm}^{(l+1)} + \left| \text{Current multipole} \right|_{lm}^{(l+1)} \right\rangle
$$

 \blacktriangleright For a given multipole *l*, the GW luminosity from the current multipole is a factor of c^2 weaker

 \blacktriangleright Also, for each increase in multipole *l*, the GW strain gets weaker by a factor of v/c , where v is

QUADRUPOLE FORMULA

$$
\dot{E}_{GW} = -\sum_{l=2}^{\infty} \sum_{m=-l}^{l} N_l \left\langle \left| \text{Mass multipole} \right|_{lm}^{(l+1)} + \left| \text{Current multipole} \right|_{lm}^{(l+1)} \right\rangle
$$

- \triangleright The current multipole is a factor of c smaller than the mass multipole.
- than the mass multipole \rightarrow ignore current multipole.
- some typical velocity of the system \rightarrow only keep lowest multipole ($l=2$).

$$
\dot{E}_{GW} \approx -\frac{1}{5} \frac{G}{c^5} \left\langle \ddot{f}_{ij} \ddot{f}^{ij} \right\rangle \quad \text{where} \quad I_{ij} = \int_{V} \rho \left(x_i x_j - \frac{1}{3} x^k x_k \right) dV
$$

Continuous

TYPES OF GRAVITATIONAL WAVES

3

Compact Binary Coalescence

- ‣ Seconds Minutes *T* ∼
- ‣ Modelled
- ‣ Binary black holes, binary neutron stars, neutron starblack hole binary

Stochastic

- ‣ Always present
- **Unmodelled**
- Overlapping of compact binary signals, inflation, cosmological phase transitions, cosmic strings

- ‣ Quasi-infinite *T* ∼
- **Modelled**
- Neutron star mountains, precession, r-modes, accreting systems, boson clouds

Bursts

- ‣ Milliseconds Seconds *T* ∼
- **Mostly unmodelled**
- Supernovae, neutron star oscillations, anything unexpected

Response of a passing GW is a tidal effect, i.e. stretches in one direction and squashes in the

DETECTION OF GRAVITATIONAL WAVES WITH GROUND-BASED DETECTORS

4

- perpendicular direction.
- ▸ The GW strain tells us how much each arm gets stretched and squeezed.
- vacuum power and more.

Credit: Vajente et al. (2019)

- Low freq. limitation
	- = Seismic noise
- (See Han Yue and Li Zhao's talks)
	- High freq. limitation
	- = Photon shot noise
- + radiation pressure noise

Sensitivity of this measurement depends on laser power, mirror coatings, mirror suspension,

Modelled searches use a bank of templates/waveforms to compare to, can get a signal-to-noise.

GRAVITATIONAL WAVE SEARCHES

5

- ▸ There are modelled and unmodelled searches for GWs.
-
-

▸ Unmodelled searches use algorithms to accumulate GW power in frequency-time space.

All-sky

Directed

(unknown location, unknown frequency) (known location, unknown frequency)

(known location, known frequency)

PART II - TIMING OBSERVATIONS

See also Heng Xu's talk

OVERVIEW OF PULSAR TIMING NOISE

An example of pulsar timing noise. *Taken from Hobbs et al. (2010).*

- ▸ Refers to any unmodelled residuals left over after known effects have been considered.
- ▸ Typically "red noise".
- ▸ Period > 1 year.
- ▸ Idea: Timing noise caused by consecutive small spin-ups and spin-downs.

OVERVIEW OF SMALL SPIN-UPS AND SPIN-DOWNS

Taken from Espinoza et al. (2014).

- ▸ Anti-glitch candidates (AGCs) are the same, but have an opposite signature
- \rightarrow AGC = $\Delta \nu < 0, \Delta \dot{\nu} > 0$

- ▸ Espinoza et al. (2014, 2021) used an automated glitch detector on Crab and Vela data.
- ▸ Glitch candidates (GCs) are like glitches but smaller in magnitude and show no signs of recovery

$$
\rightarrow GC = \Delta \nu > 0, \Delta \dot{\nu} < 0
$$

PART III - THE MODEL

See also Hongbo Li's talk

NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

 l **defined by the contract of the contract o** -modes *f* $m = \pm 2$

NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

-modes *f*

NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

Cumulative change in angular momentum:

RESULTS - MODE AMPLITUDE

RESULTS - GRAVITATIONAL WAVE DETECTABILITY

PART IV - POWERING THE OSCILLATION MODES

▸ Time-averaged approach: ⟨ .
C $E_{mode}\rangle = F\langle \delta E \rangle$

where F is the rate of mode excitation (~once per month) and $\langle\delta E\rangle$ is the average mode energy.

HOW MUCH POWER IS REQUIRED TO SUSTAIN THE MODES?

▸ Time-averaged approach: ⟨ .
C $E_{mode}\rangle = F\langle \delta E \rangle$

where F is the rate of mode excitation (~once per month) and $\langle\delta E\rangle$ is the average mode energy.

HOW MUCH POWER IS REQUIRED TO SUSTAIN THE MODES?

$$
\rightarrow \langle \dot{E}_{mode} \rangle \approx 3.9 \times 10^{34} \left(\frac{\sqrt{\langle \alpha_{2,2}^2 \rangle}}{1 \times 10^{-6}} \right)^2 \left(\frac{M}{1.4 \text{ M}_{\odot}} \right)^2 \left(\frac{R}{10 \text{ km}} \right)^{-1} \left(\frac{F}{1/(30 \text{ d})} \right) \text{ erg s}^{-1}
$$

▸ Time-averaged approach: ⟨ .
C $E_{mode}\rangle = F\langle \delta E \rangle$

where F is the rate of mode excitation (~once per month) and $\langle\delta E\rangle$ is the average mode energy.

HOW MUCH POWER IS REQUIRED TO SUSTAIN THE MODES?

▸ Compare to spin-down power .
L7 $E_{spin-down} = I\Omega$

· Ω

-
-

$$
\rightarrow \langle \dot{E}_{mode} \rangle \approx 3.9 \times 10^{34} \left(\frac{\sqrt{\langle \alpha_{2,2}^2 \rangle}}{1 \times 10^{-6}} \right)^2 \left(\frac{M}{1.4 \text{ M}_\odot} \right)^2 \left(\frac{R}{10 \text{ km}} \right)^{-1} \left(\frac{F}{1/(30 \text{ d})} \right) \text{ erg s}^{-1}
$$

Crab:
$$
\langle \dot{E}_{mode} \rangle = 7 \times 10^{-4} \dot{E}_{spin-down} \rightarrow 0.07\% \text{ of spin-down power required}
$$

Vela: $\langle \dot{E}_{mode} \rangle = 4 \times 10^{-3} \dot{E}_{spin-down} \rightarrow 0.4\% \text{ of spin-down power required}$

\triangleright Back-of-the-envelope calculation using Baym & Pines (1971) \rightarrow axisymmetric spin-down

CAN ELASTICITY POWER THESE MODES?

$▶$ Back-of-the-envelope calculation using Baym & Pines (1971) \rightarrow axisymmetric spin-down

CAN ELASTICITY POWER THESE MODES?

\blacktriangleright Back-of-the-envelope calculation using Baym & Pines (1971) \rightarrow axisymmetric spin-down

CAN ELASTICITY POWER THESE MODES?

where E_{el} is the elastic energy, ε is the oblateness, and A and B are constants due to gravitational and elastic energy corrections.

$$
E_{el} = B(\varepsilon_{ref} - \varepsilon)^2
$$

$$
\varepsilon = \frac{I_{sph}\Omega^2}{4(A+B)} + \frac{B}{A+B}\varepsilon_{ref}
$$

CAN ELASTICITY POWER THESE MODES?

 \blacktriangleright Back-of-the-envelope calculation using Baym & Pines (1971) \rightarrow axisymmetric spin-down

where E_{el} is the elastic energy, ε is the oblateness, and A and B are constants due to gravitational and elastic energy corrections.

$$
\dot{E}_{el} = -2B\dot{\varepsilon}(\varepsilon_{ref} - \varepsilon)
$$

$$
\dot{\varepsilon} = \frac{I_{sph}\Omega\dot{\Omega}}{2(A+B)} = \frac{\dot{E}_{spin-down}}{2(A+B)}
$$

$$
E_{el} = B(\varepsilon_{ref} - \varepsilon)^{2}
$$

$$
\varepsilon = \frac{I_{sph}\Omega^{2}}{4(A+B)} + \frac{B}{A+B}\varepsilon_{ref}
$$

Time derivative

CAN ELASTICITY POWER THESE MODES?

 \blacktriangleright Back-of-the-envelope calculation using Baym & Pines (1971) \rightarrow axisymmetric spin-down

where E_{el} is the elastic energy, ε is the oblateness, and A and B are constants due to gravitational and elastic energy corrections.

 \blacktriangleright For a NS crust, $B/A \sim 10^{-5}$ with $B \sim μV$, where $μ$ is the shear modulus and V is the volume of stressed elastic material

$$
\dot{E}_{el} = -2B\dot{\varepsilon}(\varepsilon_{ref} - \varepsilon)
$$

$$
\dot{\varepsilon} = \frac{I_{sph}\Omega\dot{\Omega}}{2(A+B)} = \frac{\dot{E}_{spin-down}}{2(A+B)}
$$

$$
E_{el} = B(\varepsilon_{ref} - \varepsilon)^{2}
$$

$$
\varepsilon = \frac{I_{sph}\Omega^{2}}{4(A+B)} + \frac{B}{A+B}\varepsilon_{ref}
$$
Time derivative

$$
\frac{|\dot{E}_{el}|_{max}}{\dot{E}_{spin-down}} = \frac{B}{A+B}(\varepsilon_{ref} - \varepsilon)_{max}
$$

CAN ELASTICITY POWER THESE MODES?

 \blacktriangleright Back-of-the-envelope calculation using Baym & Pines (1971) \rightarrow axisymmetric spin-down

where E_{el} is the elastic energy, ε is the oblateness, and A and B are constants due to gravitational and elastic energy corrections.

 \blacktriangleright For a NS crust, $B/A \sim 10^{-5}$ with $B \sim μV$, where $μ$ is the shear modulus and V is the volume of stressed elastic material

$$
\dot{E}_{el} = -2B\dot{\varepsilon}(\varepsilon_{ref} - \varepsilon)
$$

$$
\dot{\varepsilon} = \frac{I_{sph}\Omega\dot{\Omega}}{2(A+B)} = \frac{\dot{E}_{spin-down}}{2(A+B)}
$$

$$
E_{el} = B(\varepsilon_{ref} - \varepsilon)^{2}
$$

$$
\varepsilon = \frac{I_{sph}\Omega^{2}}{4(A+B)} + \frac{B}{A+B}\varepsilon_{ref}
$$
Time derivative

$$
\frac{|\dot{E}_{el}|_{max}}{\dot{E}_{spin-down}} = \frac{B}{A+B} (\varepsilon_{ref} - \varepsilon)_{max} \sim 10^{-6}
$$

CAN ELASTICITY POWER THESE MODES?

 \blacktriangleright Back-of-the-envelope calculation using Baym & Pines (1971) \rightarrow axisymmetric spin-down

where E_{el} is the elastic energy, ε is the oblateness, and A and B are constants due to gravitational and elastic energy corrections.

 \blacktriangleright For a NS crust, $B/A \sim 10^{-5}$ with $B \sim μV$, where $μ$ is the shear modulus and V is the volume of stressed elastic material

$$
\dot{E}_{el} = -2B\dot{\varepsilon}(\varepsilon_{ref} - \varepsilon)
$$

$$
\dot{\varepsilon} = \frac{I_{sph}\Omega\dot{\Omega}}{2(A+B)} = \frac{\dot{E}_{spin-down}}{2(A+B)}
$$

required to power modes - elasticity from NS crust not enough!) Higher shear modulus? Larger volume stressed? \rightarrow Xiaoyu Lai and Weihua Wang's talks

 Ω_B (< Ω_A)

 Ω_{A}

$$
E_{el} = B(\varepsilon_{ref} - \varepsilon)^{2}
$$

$$
\varepsilon = \frac{I_{sph}\Omega^{2}}{4(A+B)} + \frac{B}{A+B}\varepsilon_{ref}
$$
Time derivative

Unstrained

Strained

Spin-down

$$
\frac{|\dot{E}_{el}|_{max}}{\dot{E}_{spin-down}} = \frac{B}{A+B} (\varepsilon_{ref} - \varepsilon)_{max} \sim 10^{-6}
$$
 (c.f. 10⁻³)
Higher shear mo

PART V - CONCLUSION AND OUTLOOK

CONCLUSION AND OUTLOOK

- axisymmetric modes, with the model testable with GWs.
- this front to ensure our detection pipelines are ready.
- to higher order in Ω to see if effect is still present.
-
- NS crust. Perhaps superfluidity of interior can also play a role.

▸ Showed that small glitches and anti-glitches could be due to the excitation and decay of non-

A confident detection requires coherently stacking multiple signals. More work should be done on

 $\,\blacktriangleright\,$ Gravitational wave back-reaction from decaying oscillation mode is <u>surprising</u> \rightarrow extend calculation

▶ We also need good time resolution for these small events. A re-analysis of the radio data should be done but focused on improving accuracy of the event times (e.g. with FAST). It would also be good to know the <u>glitch size distribution</u> for small glitches and anti-glitches. $\rightarrow \,$ **Weiyang Wang's talk**

 \blacksquare If elasticity plays a role in powering these modes, we require something <u>more exotic</u> than just the

/ 13 13

EXTRA SLIDES

$$
\frac{\Delta\dot{\nu}}{\dot{\nu}} = \frac{2\tau_{age}}{\tau_{EM}} \frac{I_n}{I} \left(\frac{\Delta\nu}{\nu}\right)
$$

EXPLAINING $Δi$ **- Include the Internal coupling torque**

- ▸ Two components: pinned superfluid and crust.
- ▸ Weakly coupled by coupling torque:

$$
\rightarrow N_{coup} \propto \frac{\Omega_s - \Omega_c}{\tau_{coup}}
$$

