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PART | - INTRODUCTION TO GRAVITATIONAL WAVES



WHAT ARE GRAVITATIONAL WAVES?

» In electrodynamics, the acceleration of charged particles gives rise to electromagnetic waves
(starting from dipole radiation).

» As an analogy, in gravitational physics, the acceleration of masses gives rise to gravitational
waves (starting from quadrupole radiation).

» More specifically, gravitational waves are emitted whenever there is a time-varying non-
axisymmetric mass or current multipole moment:

| o (I+1) (I+1)
Eow = — Z Z N;( [Mass multipole| + |Current multipole

[=2 m=—I Im Im

where (/) represents the ['th time derivative and the angled brackets represents an average
over many gravitational wave cycles. [Thorne (1980); Lindblom, Owen & Morsink (1998)]
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QUADRUPOLE FORMULA

, o (I+1) (I+1)
Eopy = — Z Z N;{ [Mass multipole| + |Current multipole

[=2 m=-—I Im Im

» The current multipole is a factor of ¢ smaller than the mass multipole.

» For a given multipole [, the GW luminosity from the current multipole is a factor of ¢? weaker

than the mass multipole — ignore current multipole.

» Also, for each increase in multipole /, the GW strain gets weaker by a factor of v/c, where v is

some typical velocity of the system — only keep lowest multipole (I = 2).

B G i i\ where £ = LY av
GWN—EE< y > where lj—JVp xixj—gxxk
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TYPES OF GRAVITATIONAL WAVES

Compact Binary Coalescence

T ~ Seconds - Minutes
Modelled

Binary black holes, binary
neutron stars, neutron star-
black hole binary

Stochastic

GARVIN YIM

Always present
Unmodelled

Overlapping of compact
binary signals, inflation,
cosmological phase
transitions, cosmic strings
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Continuous

> T ~ Quasi-infinite

> Modelled

> Neutron star mountains,
precession, rr-modes,
accreting systems, boson
clouds

Bursts

3 /13

T ~ Milliseconds - Seconds
Mostly unmodelled

Supernovae, neutron star
oscillations, anything
unexpected




DETECTION OF GRAVITATIONAL WAVES WITH GROUND-BASED DETECTORS

» Response of a passing GW is a tidal effect, i.e. stretches in one direction and squashes in the
perpendicular direction.

AL
h~—

» The GW strain tells us how much each arm gets stretched and squeezed. L

» Sensitivity of this measurement depends on laser power, mirror coatings, mirror suspension,

vacuum power and more. 1o 1y —
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GRAVITATIONAL WAVE SEARCHES

» There are modelled and unmodelled searches for GWs.
» Modelled searches use a bank of templates/waveforms to compare to, can get a signal-to-noise.

» Unmodelled searches use algorithms to accumulate GW power in frequency-time space.

All-sky Directed Targeted

(unknown location, unknown frequency) (known location, unknown frequency) (known location, known frequency)
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PART Il - TIMING OBSERVATIONS
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OVERVIEW OF PULSAR TIMING NOISE

[ » Refers to any unmodelled
1826—17 - .
| _ residuals left over after known
o [l el ‘ effects have been considered.
o 1826—17 - -
: 3 SMAAN
S, . DN T » Typically “red noise”.
QL) -
so | - o d
S » Period > 1 year.
o1 _
- \/\J : » Idea: Timing noise caused by
:J WW consecutive small spin-ups and
I AN TN g spin-downs.
0.5 1 1.5 2
Frequency (year™ ')

An example of pulsar timing noise. Taken from Hobbs et al. (2010).
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OVERVIEW OF SMALL SPIN-UPS AND SPIN-DOWNS

10000 |

» Espinoza etal. (2014, 2021) used an

automated glitch detector on Crab and
Vela data.

1000 |

100

» Glitch candidates (GCs) are like glitches
but smaller in magnitude and show no
signs of recovery

- GC=Ar >0, Av < ()

IAD| (1075 Hz s7)

b
o

< Glitch
o GC
o AGC

» Anti-glitch candidates (AGCs) are the
same, but have an opposite signature
0.0001 0.001 0.01 0.1 1 10

AVl (uHz) —- AGC=Ar<0,Ar >0

Taken from Espinoza et al. (2014).

0.1
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PART Ill - THE MODEL
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NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

£
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NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

Spm -down

~ Month
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NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

Q, ST e oxcitaion
A A A

@ - & -

~ Month “Tnstantaneous”
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NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

Q, ST e oxcitaion
A A A

®- 0 -

~ Month “Tnstantaneous” ' ~ 100 ms
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NEUTRON STAR OSCILLATION MODEL FOR SMALL SPIN-UPS AND SPIN-DOWNS

gAZO g}g Mode excitation ) Mode decay + AL

®- 0 -

~ Month “Tnstantaneous” ' ~ 100 ms

Cumulative change in angular momentum:

Modes: 0 +0J
GWs: 0 O

(Yim & Jones, MNRAS, 2022)
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RESULIS - MODE AMPLITUDE
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RESULTS - GRAVITATIONAL WAVE DETECTABILITY
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PART IV - POWERING THE OSCILLATION MODES



HOW MUCH POWER IS REQUIRED TO SUSTAIN THE MODES?

» Time-averaged approach: (E, . ) = F(SE)

ode

where F is the rate of mode excitation (~once per month) and (JFE) is the average mode energy.
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HOW MUCH POWER IS REQUIRED TO SUSTAIN THE MODES?

» Time-averaged approach: (E, . ) = F(SE)

ode

where F is the rate of mode excitation (~once per month) and (JFE) is the average mode energy.
2

(a3,) z .
by mae g Y (Y () (Y g

1 x 109 1.4 Mg 10 km 1/(30 d)
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HOW MUCH POWER IS REQUIRED TO SUSTAIN THE MODES?

» Time-averaged approach: (E, . ) = F(SE)

ode

where F is the rate of mode excitation (~once per month) and (JFE) is the average mode energy.
2

(a3,) z .
by mae g Y (Y () (Y g

1 x 109 1.4 Mg 10 km 1/(30 d)

» Compare to spin-down power E = ]QQ

spin—down

Crab: (E, . )=T7x10"*F

Ein—down —  0.07% of spin-down power required

ode

Vela: (E . )Y=4x107° Esp — 0.4 % of spin-down power required

in—down
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CAN ELASTICITY POWER THESE MODES?

» Back-of-the-envelope calculation using Baym & Pines (1971) — axisymmetric spin-down

£

Unstrained § Eref

1 o
o
1 o*
o
] ! ““
» e
reaa, annun®®

=0
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CAN ELASTICITY POWER THESE MODES?

» Back-of-the-envelope calculation using Baym & Pines (1971) — axisymmetric spin-down

£

Unstrained § Eref

: Eel — O
Spin-down

S}B (< Q)
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CAN ELASTICITY POWER THESE MODES?

» Back-of-the-envelope calculation using Baym & Pines (1971) — axisymmetric spin-down

Q
_ 2 <A
Eel =b (8ref — €)
]Sphgz B Unstrained Eprof
&= | Ere f :
4A+B) A+B
Eel — O
where £, is the elastic energy, ¢ is the oblateness, and A and B are down | <))
B A

constants due to gravitational and elastic energy corrections.
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CAN ELASTICITY POWER THESE MODES?

» Back-of-the-envelope calculation using Baym & Pines (1971) — axisymmetric spin-down

: Q
E, = B(g,p— £)” E, = —2Bé(g,p— €) uA

2 . ined
Isth B . ISPhQQ Espin—down Unstrlamed € of

— I gref E =
1A+B)  A+B

: "2(A+B) 2A+B)

where E; is the elastic energy, ¢ is the oblateness, and A and B are Spin-down

S}B (< Q)

constants due to gravitational and elastic energy corrections.
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CAN ELASTICITY POWER THESE MODES?

» Back-of-the-envelope calculation using Baym & Pines (1971) — axisymmetric spin-down

: Q
E, = B(g,p— £)” E, = —2Bé(g,p— €) uA

2 . ined
Isth B . ISPhQQ Espin—down Unstrlamed € of

— I gref E =
1A+B)  A+B

: "2(A+B) 2A+B)

where E; is the elastic energy, ¢ is the oblateness, and A and B are Spin-down

S}B (< Q)

constants due to gravitational and elastic energy corrections.

» For a NS crust, B/A ~ 107> with B ~ 4V, where y is the shear modulus and

Vis the volume of stressed elastic material

B B
" A4B

‘ el ‘max

E

spin—down

(8ref o 8)max
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CAN ELASTICITY POWER THESE MODES?

» Back-of-the-envelope calculation using Baym & Pines (1971) — axisymmetric spin-down

: Q
E, = B(g — £)” E, = —2Bé(g,p— €) a!

2 . ined
Isth B . ISPhQQ Espin—down Unstrlamed € of

— I E E = —
4A+B) A+B ™ 2A+B) 2(A+B)

E

where E; is the elastic energy, ¢ is the oblateness, and A and B are Spin-down

S}B (< Q)

constants due to gravitational and elastic energy corrections.

» For a NS crust, B/A ~ 107> with B ~ 4V, where y is the shear modulus and

Vis the volume of stressed elastic material

B

— E — & ~/ 10_6
A B( ref )max

| el |max

E

spin—down
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CAN ELASTICITY POWER THESE MODES?

» Back-of-the-envelope calculation using Baym & Pines (1971) — axisymmetric spin-down

Ly=Db (8ref o 8)2 E,=-2B é(gref — €) g}A
IsthZ B | ]SthQ Espm_ o Unstrained Erof
T 4A+B) A+ B "T2A4+B) 2A+B)
" E, =0
where £, is the elastic energy, € is the oblateness, and A and B are e <))

constants due to gravitational and elastic energy corrections.

» Fora NS crust, B/A ~ 107> with B ~ uV,where u is the shear modulus and Straf”ed e (< gref)

Vis the volume of stressed elastic material

E,; >0

| Ly |max B —6 (c.f. 1072 required to power modes - elasticity from NS crust not enough!)
2 - A (gref o )max ~ 10

in—down Higher shear modulus? Larger volume stressed? — Xiaoyu Lai and Weihua Wang's talks
S —
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PART V - CONCLUSION AND OUTLOOK




CONCLUSION AND OUTLOOK

» Showed that small glitches and anti-glitches could be due to the excitation and decay of non-
axisymmetric modes, with the model testable with GWs.

» A confident detection requires coherently stacking multiple signals. More work should be done on
this front to ensure our detection pipelines are ready.

» Gravitational wave back-reaction from decaying oscillation mode is surprising — extend calculation

to higher order in €2 to see if effect is still present.

» We also need good time resolution for these small events. A re-analysis of the radio data should be
done but focused on improving accuracy of the event times (e.g. with FAST). It would also be good

to know the glitch size distribution for small glitches and anti-glitches. = Weiyang Wang's talk

» If elasticity plays a role in powering these modes, we require something more exotic than just the
NS crust. Perhaps superfluidity of interior can also play a role.

K A{/LI
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EXTRA SLIDES




EXPLAINING Az - INCLUDE THE INTERNAL COUPLING TORQUE

2d <M< 56d 1.6d < tpm<351d
} TWO ComponentS: 104 LU AELL B N R LEL B R LLL B |||||||/,'| TR 104 E-—l—l—l‘rrl'rq 1) B SRR E—— lllll/ll/ T T r"l‘l'n‘?
. . - 4 . - -
pinned superfluid ; ) o ; S
10° £ S 10° £ =
and crust. : ‘o0 S : 3
r— B P 7 r— B /’ ¢ 7
0 : s — : : R0
3 10 = o —= z 102 £ ,’/ ,// ?0 —
» Weakly coupled by =2 ¢ ] 2 0F ;
" = = " E . . v E
coupling torque: s e 1 & P :
— 10' £ E — 10" E “ o aad yd E
= b A I ¥ ) 5
QS o QC i B ,’ - i - /, : .:. - ,’/ al
- p - - o p i
% NCOl/tp O< 100 - e GC - 100 ?’/ °6.o ‘ ,” e GC -
T o o AGC = - ¢ ' o AGC =
coup - ¢ Glitch N e ¢ Glitch
10—1 L u'i'llnl e o e Lot 10—1 vl L’{:nnl R RN N R B AN N ETaT
10-* 103 102 10~ 10° 10! 10—+ 1072 102 107! 10° 10! 10
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AI/ 2Tage In AU
I - oy 1 1 Crab Dashed band: [ /1= 1

Grey band: [ / 1 = 0.07
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