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Equation of state (EOS) and structure of neutron star

{ Neutron Stars - Physics in extremes
e Compactness GM/Rc? ~ 0.2, need GR

e Strong interactions are more important

Non-perturbative QCD + many-body 1nteractions

N Electroweak 1nteract10ns drwe the astronomlcal emission  Credit: NASA/CXC/M. Weiss

Neutron Stars a unique 1nterp1ay among
| e astrophysics
_ e gravitational physics \

After half a century since the discovery, we are still far from
Berkeléy Lab understanding the composition of matter in their cores! 3




The EOS model of NSs
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Mass and radius relation
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Perturbation analysis in Newtonian gravity

Oscillation modes

Fluid equations:

Mass conservation 8_,0 +V-(pv) =0
ot
. dv
Euler equations pd— =—pVDP-VP
t
Poisson’s equation V20 = 42Gp

The system 1s completed by providing an equation of state (EOS):

P=P(p,...)



The gravity (g) mode of the NS

Oscillation modes
Consider the small adiabatic oscillations of a self-gravitating fluid globe

Linearly perturbed fluid equations:

. Assuming g(t, r) = g(?)eiwt
op+V-(ps)=0

e =-voo-Lvo—_vsr %+ CO=0 |

V2(6®) = 47G(5p) boundaronditions
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Eulerian (o) and Lagrangian (A) perturbations are related via: AQ = 60 + E-VQ



Oscillation modes
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We consider the EOS, p = p(P, S) E
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Lietal., 2023
e Temperature Q
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The pseudo-Newtonian gravity

Motivation

(1) Numerical simulations

I: The pseudo-Newtonian formulations are commonly used 1n the numerical simulations of
core-collapse supernova (CCSN)

Marek et al. (2006), Mueller et al. 2008, Yakunin et al. 2015, Morozova et al. 2018, OConnor et al. 2018

II: Many works have 1dentified features in the GW signals associated with the g-mode of the
proto-neutron star (PNS)

Murphy et al. 2009, Mueller et al. 2012, Cerda-Duran et al. 2013, Kuroda et al. 2016, Andresen et al. 2016
(2) Perturbative calculations

Tang and Lin (2022) studied the radial and non-radial oscillation modes of NSs
in pseudo-Newtonian gravity

only considered the barotropic oscillations of NSs (f and p modes)



The general relativistic and pseudo-Newtonian gravity




Density discontinuity
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The g-mode of NSs: density discontinuity

The g-mode frequencies in pseudo-Newtonian treatments can be approximated remarkably well to the GR
solutions, with relative errors 1n the order of 1%
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Structure of Neutron Star Crust

Even though the crust of a neutron star represents about 1% of the stellar mass and 10%
of the radius, 1t 1s thought to be related to various
astrophysical phenomena:

(1) PUISaI‘ glltCh » Surface

_~ Quter Crust

(2) X-ray (super)bursts

Inner Crust

(3) Gravitational wave emission
(mountains)

(4) Giant flares from soft gamma-ray N o

Superfluid neutrons
and superconducting
protons

repeaters and quasiperiodic oscillations

Credit: Chamel, 2016
(QPOS) redi amel, 3



Structure of neutron star crust

J 9 J

(1): Structure of the outer crust Envelop e
. o . . 106 3
The matter at densities below neutron drip 1s not only relevant for p~ 10" glem
neutron star crusts but also for white dwarfs Outer crust
p~4.10" g/cm’

Following the classical paper of Baym, Pethick, and Sutherland, 1971 (BPS EOS)

neutron drip

Total energy density:

e =nyE{A,Z} +€,+ €

[nner crust N - p~ 1/3p,

ny 1s the number density of nuclel

pasta phases

E{A, Z}is the energy of a nucleus with Z protons and
(A-Z) neutrons

p~2/3p,
Chamel & Haensel, LRR, 2008 14



Crystallized white dwarfs

Mass-central density/radius relation for crystallized white dwarts
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Observations: quasi-periodic oscillations (QPOs)

Giant flares in SGRs

Credit: Watts and Strohmayer, 2006

A decaying tail for several hundred seconds follows the flare

QPOs 1n decaying tail

Israel et al., 2005; Strohmayer and Watts, 2005;
Watts and Strohmayer, 2006

e SGR 1900+14 (1998): 28, 53, 84, 155 Hz

e SGR 1806-20 (2004): 18, 26, 29, 92.5, 150,
626.5, 720,976, 1837, 2384 Hz

«10° Counts s~

«10° Counts s~
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Where do the QPOs come from? Are they Starquakes?

Neutron Star Possible origin of the observed
Mass ~ 1.5 times the Sun frequencies

diameter ~ 20 km

(I) Discrete Shear modes (crust)?
Solid crust
~1..2km

(II) Altven oscillations:

- " : 9
Magnetic field coupled crust-core oscillations’

~10"... 107 G with or without superfluid effects,
pasta phases, ...

_—’ Heavy liquid core,
mostly neutrons,
with other particles

(III) Magnetospheric: oscillations?

Credit: Michael Gabler, 2014

(Glampedakis et al. 06; Levin 07; Van Hoven & Levin 11 & 12; Colaiuda et al. 10 & 11 & 12;

Gableretal. 11, 12, 13, 16, &18, Passamonti 12, 13, 14 & 16, Sotani et al. 07, 08, 13, 14, 15...)
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Thank you for your attention!
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