

Yim, Shao & Xu (in prep.) DDF2024, Guiyang, China, 14th May 2024

g.yim@pku.edu.cn

Contents

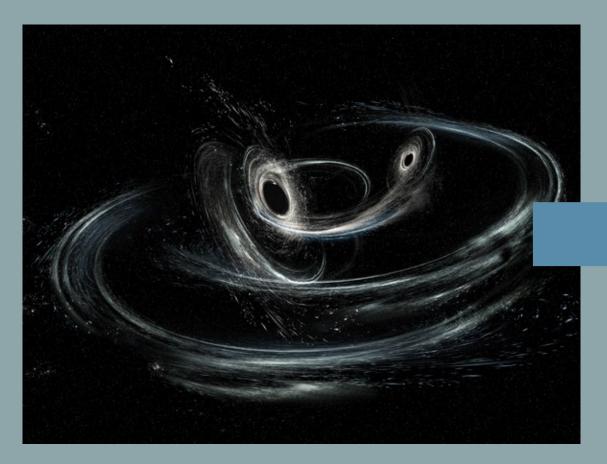
- Motivation:

 O4 run is underway
- Objectives:
 Compare different pulsar glitch models Create a list of high priority targets
 - Part I Energy budgets from pulsar glitches Part II - Gravitational wave signal analysis Part III - Results Part IV - Summary

High priority transient continuous gravitational wave targets

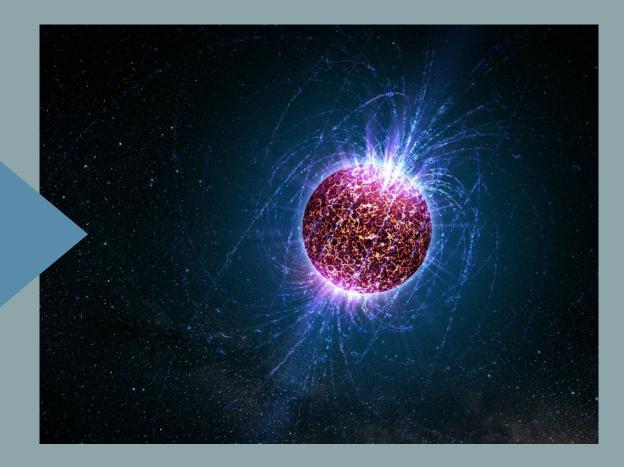
Garvin Yim

Not yet observed a continuous gravitational wave (CW) signal



Part I - Energy budgets from pulsar glitches

Transient continuous waves


Duration = Ø(Minutes)

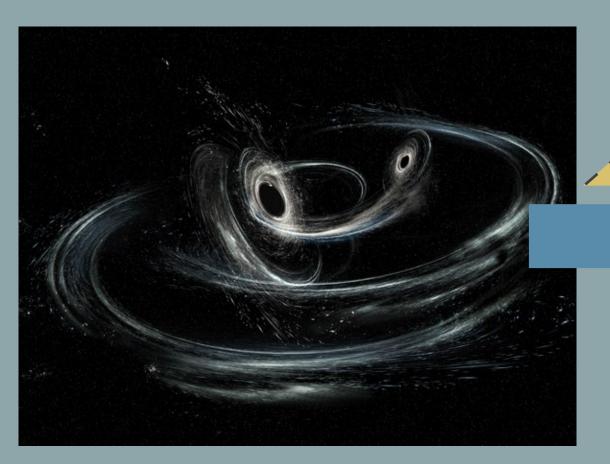
Garvin Yim

High priority transient continuous gravitational wave targets

Duration \gg Observation time

Duration

2/23

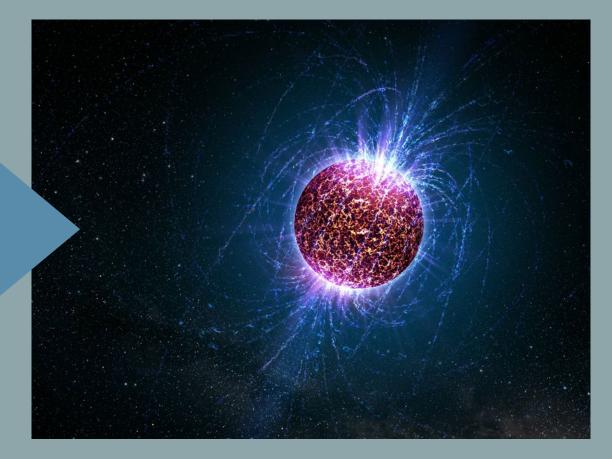


Transient continuous waves

Transient Continuous Waves

Duration = $\mathcal{O}(Minutes)$

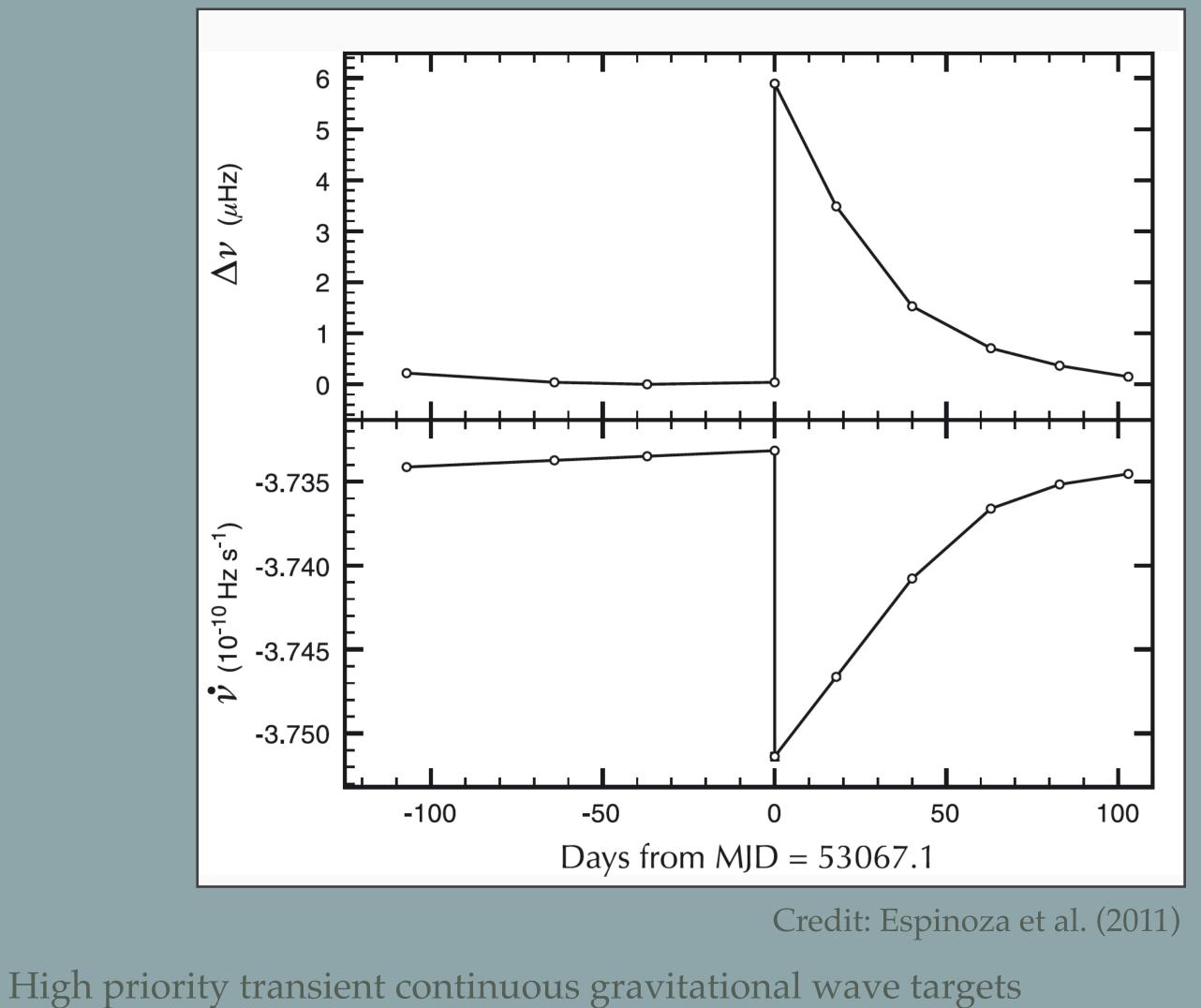
Garvin Yim


High priority transient continuous gravitational wave targets

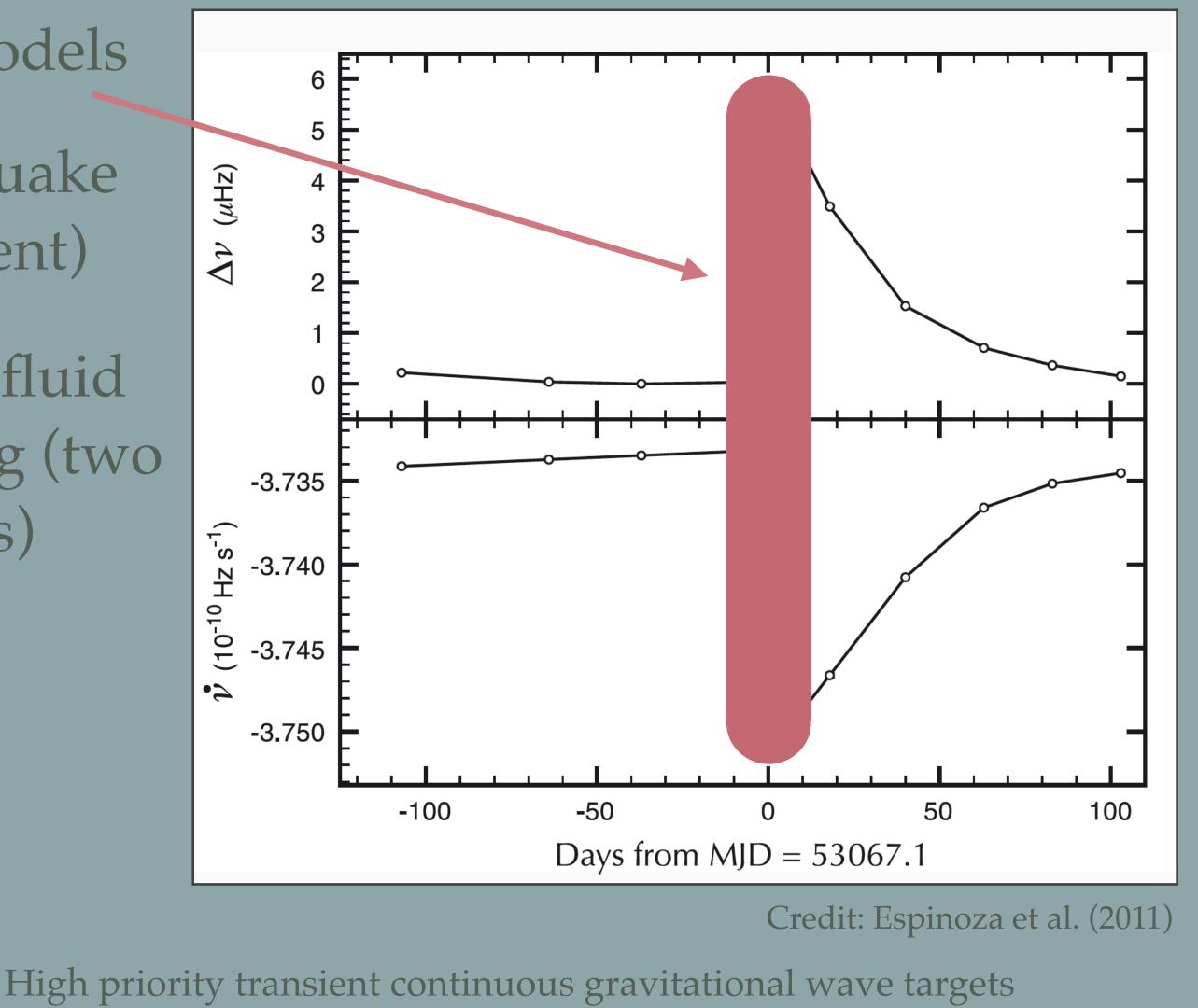
$$h(t) = \varpi(t; t_0, T_{GW})h_{CW}(t)$$

O(Minutes) < Duration < O(Months)

Duration \gg Observation time


Duration

Garvin Yim

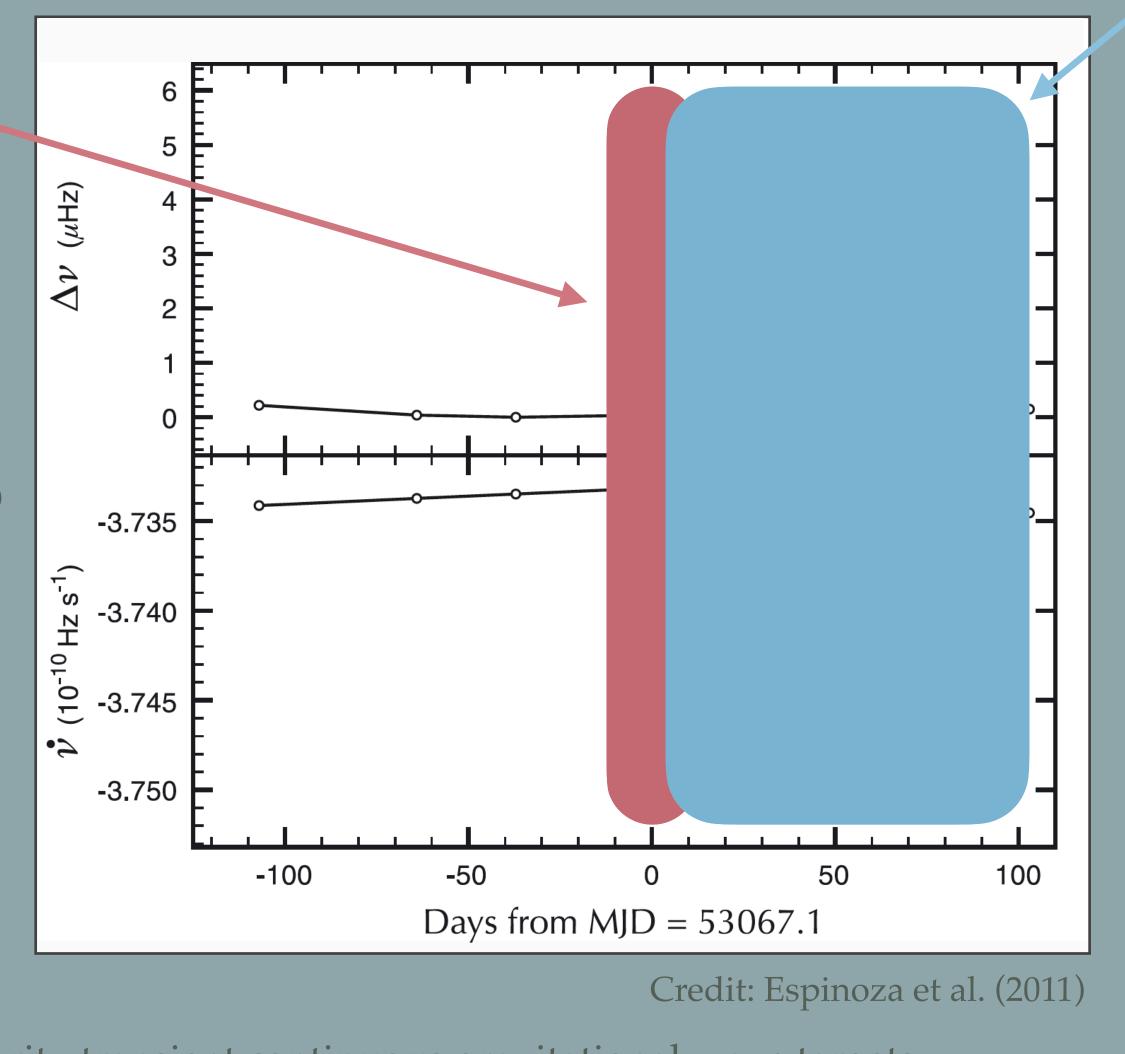


"Glitch rise" models

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

Garvin Yim



"Glitch rise" models

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

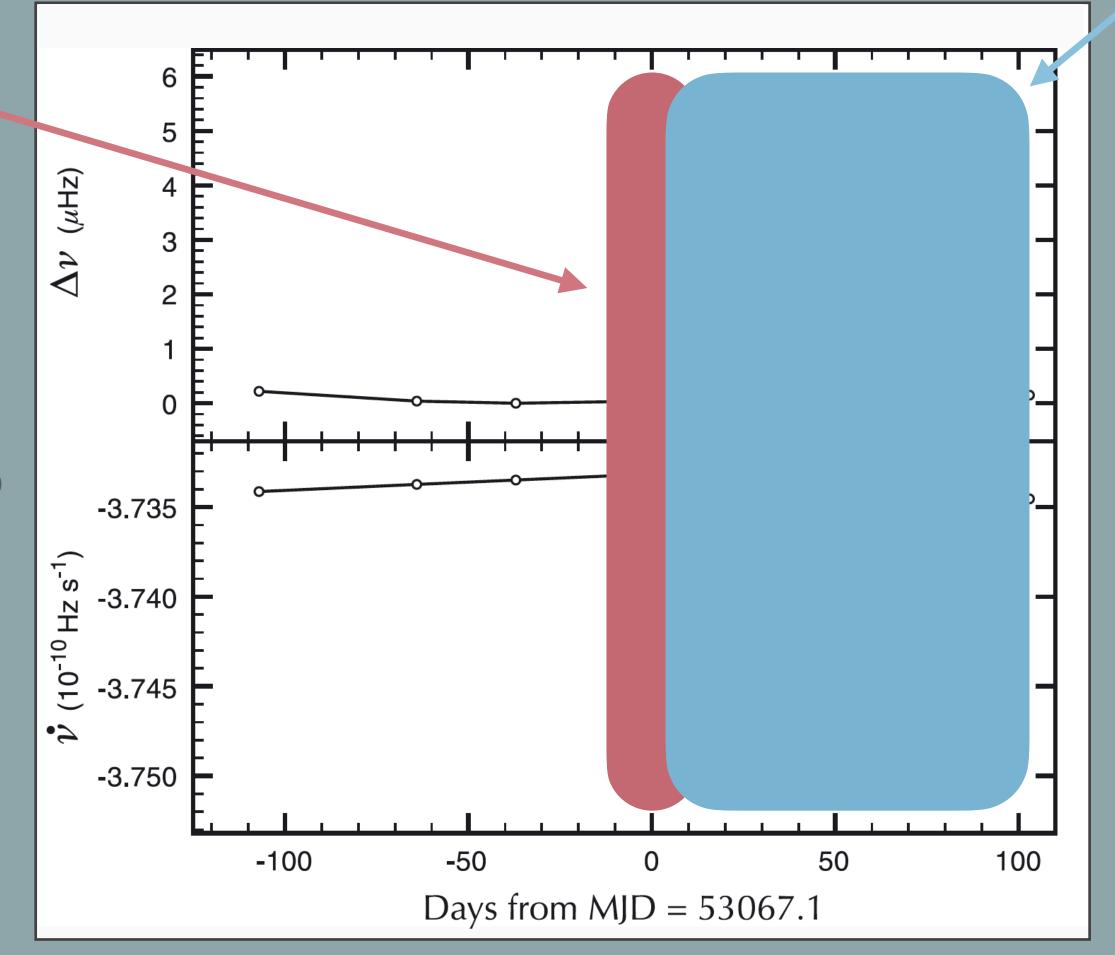
Garvin Yim

High priority transient continuous gravitational wave targets

"Postglitch" models

Model 3: Transient mountain

Model 4: Ekman pumping



"Glitch rise" models

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

Garvin Yim

High priority transient continuous gravitational wave targets

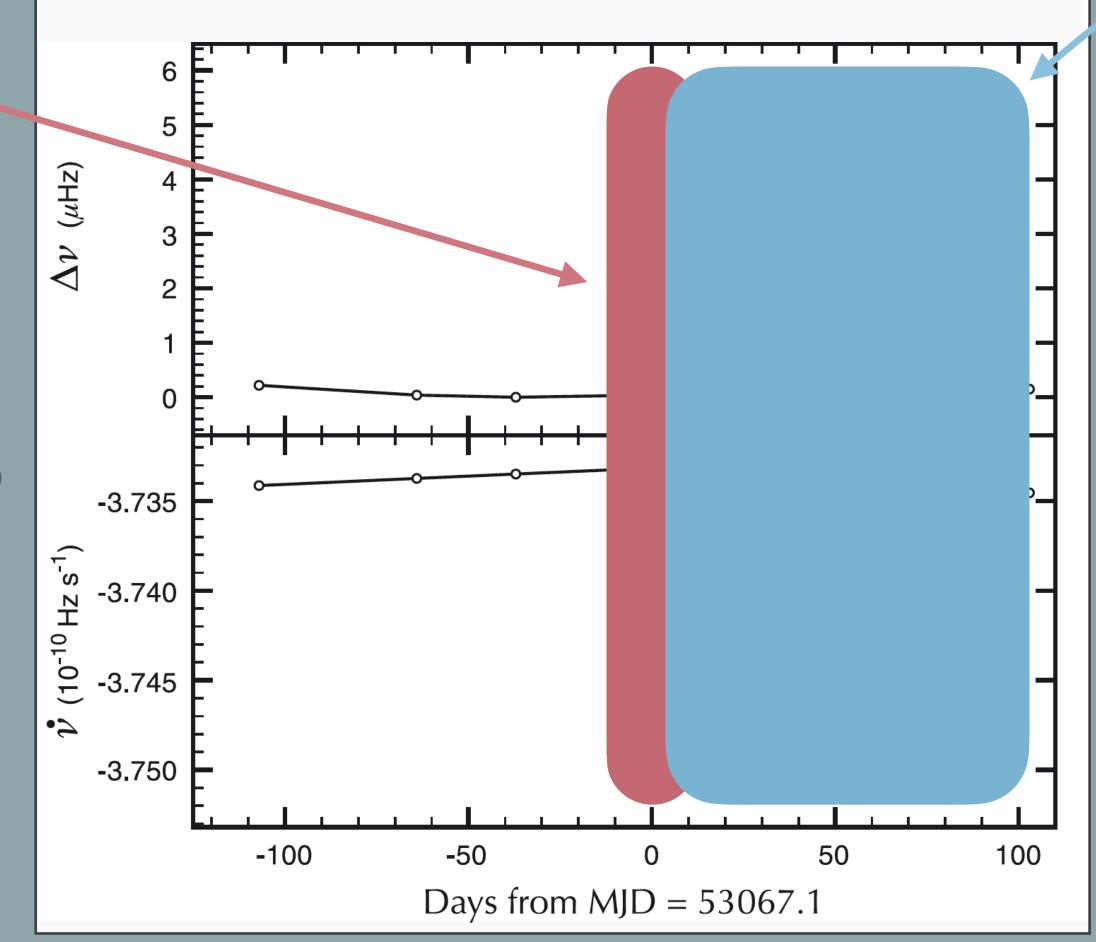
Credit: Espinoza et al. (2011)

"Postglitch" models

Model 3: Transient mountain

Model 4: Ekman pumping

Postglitch models are agnostic to what causes the spin-up. Glitch models attempt to explain the spin-up.



+2 "naïve" models, one each for oneand two- component neutron stars

"Glitch rise" models

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

Garvin Yim

High priority transient continuous gravitational wave targets

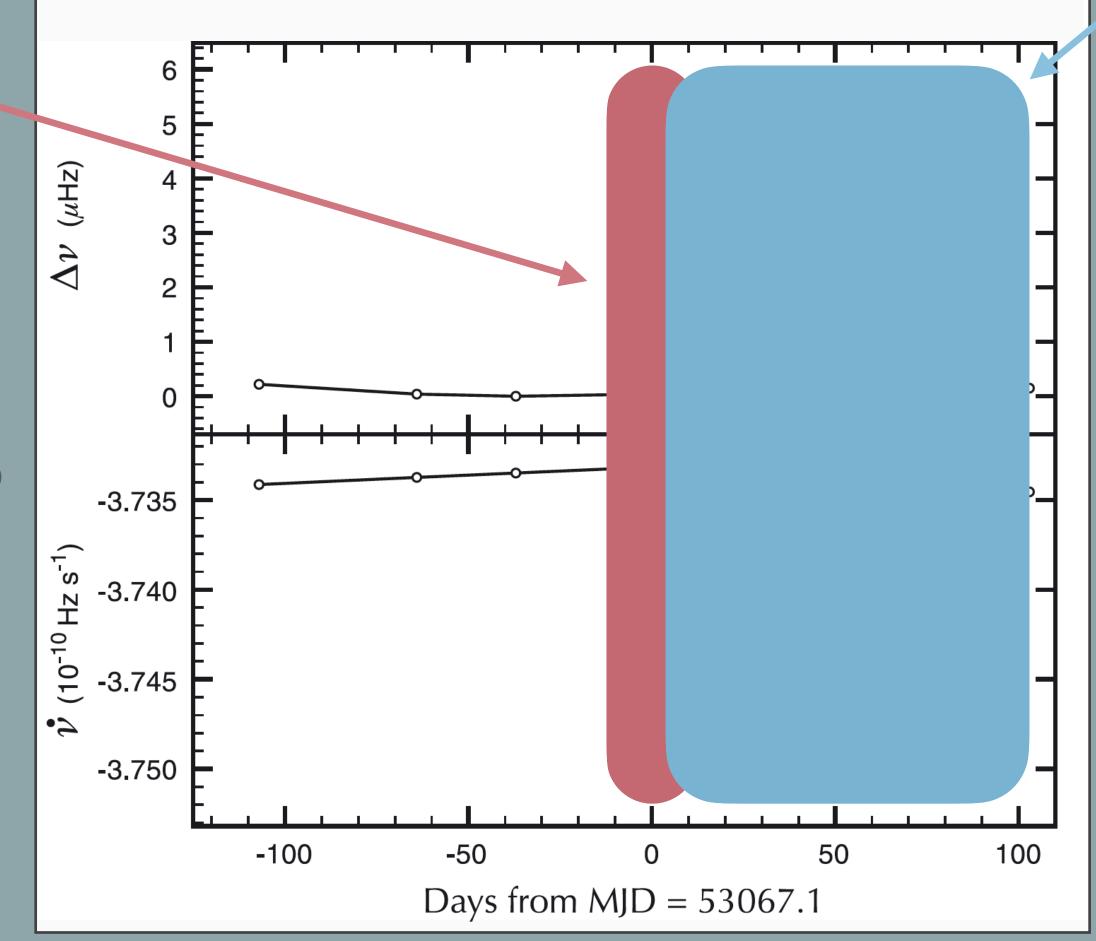
Credit: Espinoza et al. (2011)

"Postglitch" models

Model 3: Transient mountain

Model 4: Ekman pumping

Postglitch models are agnostic to what causes the spin-up. Glitch models attempt to explain the spin-up.


+2 "naïve" models, one each for oneand two- component neutron stars

"Glitch rise" models

Model 1: Starquake (one component)

Model 2: Superfluid vortex unpinning (two components)

> Concerned mostly about the energy available for GW emission, E_{GW}

Garvin Yim

High priority transient continuous gravitational wave targets

Credit: Espinoza et al. (2011)

"Postglitch" models

Model 3: Transient mountain

Model 4: Ekman pumping

Postglitch models are agnostic to what causes the spin-up. Glitch models attempt to explain the spin-up.

Summary: Reduction in ΔI leads to an increase in $\Delta \Omega$ since $\Delta J = 0$

Garvin Yim

High priority transient continuous gravitational wave targets

kinetic energy can be written as: $J = I\Omega$ and $E_{rot} = I\Omega^2/2$

Garvin Yim

High priority transient continuous gravitational wave targets

Summary: Reduction in ΔI leads to an increase in $\Delta \Omega$ since $\Delta J = 0$

One component in the sense that the angular momentum and rotational

- One component in the sense that the angular momentum and rotational kinetic energy can be written as: $J = I\Omega$ and $E_{rot} = I\Omega^2/2$
- Imagine a sudden decrease in the moment of inertia ΔI , i.e. a starquake.
- We must conserve angular momentum so $\Delta J \approx (\Delta I)\Omega + I\Delta\Omega = 0$
- This causes the energy to change: Δ

Garvin Yim

High priority transient continuous gravitational wave targets

Summary: Reduction in ΔI leads to an increase in $\Delta \Omega$ since $\Delta J = 0$

$$\Delta E_{rot} = \frac{1}{2}(I + \Delta I)(\Omega + \Delta \Omega)^2 - \frac{1}{2}I\Omega^2$$

- One component in the sense that the angular momentum and rotational kinetic energy can be written as: $J = I\Omega$ and $E_{rot} = I\Omega^2/2$
- Imagine a sudden decrease in the moment of inertia ΔI , i.e. a starquake.
- We must conserve angular momentum so $\Delta J \approx (\Delta I)\Omega + I\Delta\Omega = 0$
- This causes the energy to change: Δ
- Assuming $E_{GW} = \Delta E_{rot}$ this means

High priority transient continuous gravitational wave targets

Garvin Yim

Summary: Reduction in ΔI leads to an increase in $\Delta \Omega$ since $\Delta J = 0$

$$\Delta E_{rot} = \frac{1}{2} (I + \Delta I) (\Omega + \Delta \Omega)^2 - \frac{1}{2} I \Omega^2$$

$$E_{GW} = \frac{1}{2} I \Omega \Delta \Omega$$

Model 2: Vortex unpinning (two component) model

[Sidery et al. 2010, LSC 2011, Prix et al. 2011]

Garvin Yim

High priority transient continuous gravitational wave targets

Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$

5/23

 $J = I_s \Omega_s + I_c \Omega_c \qquad E_{rot} = \frac{1}{2} I_s \Omega_s^2 + \frac{1}{2} I_c \Omega_c^2$

Garvin Yim

High priority transient continuous gravitational wave targets

- Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$
- Two component model: superfluid (s) and crust+everything else coupled to it (c)

$$J = I_s \Omega_s + I_c \Omega_c \qquad \qquad E_{rot} =$$

External torque (e.g. magnetic dipole radiation) acts only on the crust component, so lag develops between the two components: $\omega \equiv \Omega_s - \Omega_c > 0$

Garvin Yim

High priority transient continuous gravitational wave targets

- Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$
- Two component model: superfluid (s) and crust+everything else coupled to it (c)
 - $=\frac{1}{2}I_s\Omega_s^2 + \frac{1}{2}I_c\Omega_c^2$

$$J = I_s \Omega_s + I_c \Omega_c \qquad \qquad E_{rot} =$$

- External torque (e.g. magnetic dipole radiation) acts only on the crust component, so lag develops between the two components: $\omega \equiv \Omega_s - \Omega_c > 0$
- At a glitch, the components couple and the superfluid component transfers angular momentum to the crustal component, leading to an observed glitch High priority transient continuous gravitational wave targets Garvin Yim

- Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$
- Two component model: superfluid (s) and crust+everything else coupled to it (c) $=\frac{1}{2}I_s\Omega_s^2 + \frac{1}{2}I_c\Omega_c^2$

- The superfluid component spins-down as the crustal component spins-up $\Delta J = I_{c} \Delta \Omega_{c} + I_{c} \Delta \Omega_{c} = 0$
 - and they co-rotate after the glitch at $\Omega_{co} = \Omega_{0,i} + \Delta \Omega_i$ for i = s, c.

High priority transient continuous gravitational wave targets

Garvin Yim

Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$

- The superfluid component spins-down as the crustal component spins-up $\Delta J = I_{\rm s} \Delta \Omega_{\rm s} + I_{\rm c} \Delta \Omega_{\rm c} = 0$
 - and they co-rotate after the glitch at $\Omega_{co} = \Omega_{0,i} + \Delta \Omega_i$ for i = s, c.
- We can calculate the resultant change in energy for each component $\Delta E_{rot,i} = \frac{1}{2} I_i [\Omega_{co}^2 - (\Omega_{co} - \Delta \Omega_i)^2]$

$$E_{GW} = \frac{1}{2} I(\Delta \Omega)^2 \left(\left(\frac{I_s}{I} \right)^{-1} - \frac{1}{2} \right)^{-1} - \frac{1}{2} \left(\frac{I_s}{I} \right)^{-1} - \frac{I_s}{I} \right)^{-1} - \frac{I_s}{I} \left(\frac{I_s}{I} \right)^{-1} - \frac{I_s}$$

High priority transient continuous gravitational wave targets

Garvin Yim

Summary: Excess rotational kinetic energy of two components $\rightarrow E_{GW}$

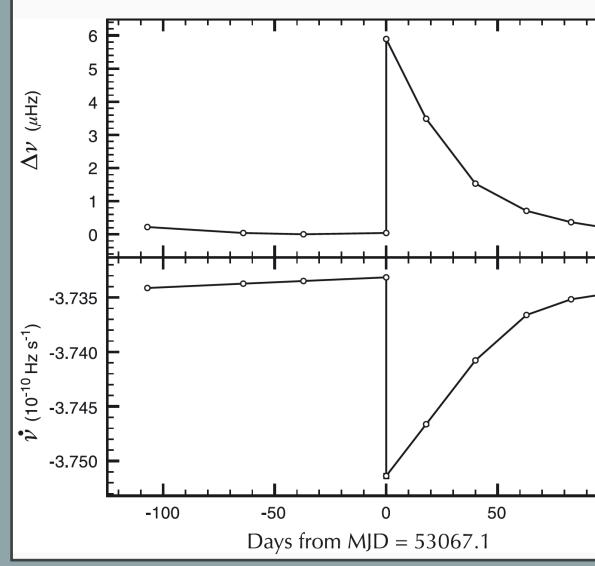
and when we sum the two components together, we get an excess energy of:

where
$$I = I_s + I_c$$

Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers

Garvin Yim

High priority transient continuous gravitational wave targets



Considers angular momentum conservation Glitch: $\Delta \dot{\Omega}(t) = \Delta \dot{\Omega}_p + \Delta \dot{\Omega}_t(t) = \Delta \dot{\Omega}_p + \Delta \dot{\Omega}_t e^{-\frac{t}{\tau_{EM}}}$

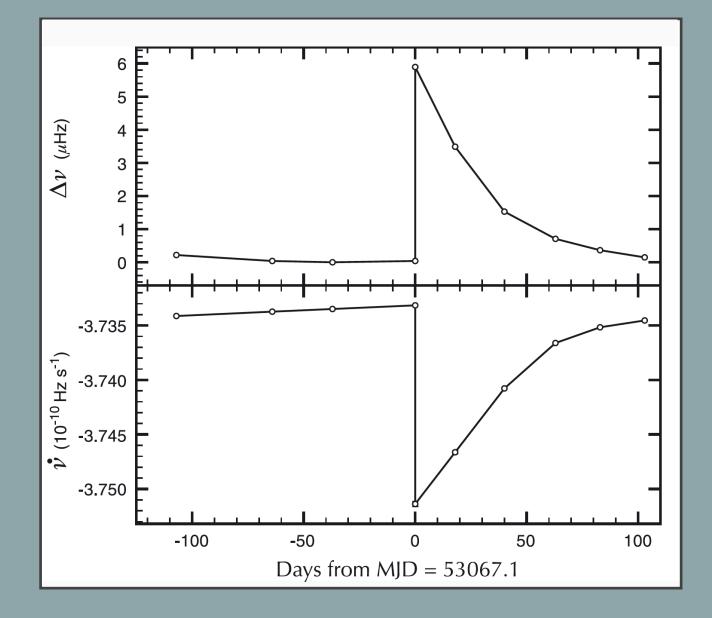
Garvin Yim

High priority transient continuous gravitational wave targets

Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers

Considers angular momentum conservation

Glitch:
$$\Delta \dot{\Omega}(t) = \Delta \dot{\Omega}_p + \Delta \dot{\Omega}_t(t) = \Delta \dot{\Omega}_p + \Delta \dot{\Omega}_t e^{-\frac{t}{\tau_{EM}}}$$


Attribute the transient part to a transient mountain

$$I\Delta\dot{\Omega}_t(t) = -\frac{32}{5}\frac{G}{c^5}I^2\Omega^5\varepsilon^2(t)$$

Garvin Yim

High priority transient continuous gravitational wave targets

Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers

Considers angular momentum conservation

Glitch:
$$\Delta \dot{\Omega}(t) = \Delta \dot{\Omega}_p + \Delta \dot{\Omega}_t(t) =$$

Attribute the transient part to a transient mountain

$$I\Delta\dot{\Omega}_{t}(t) = -\frac{32}{5}\frac{G}{c^{5}}I^{2}\Omega^{5}\varepsilon^{2}(t) \quad \rightarrow \quad \varepsilon(t) =$$

Garvin Yim

High priority transient continuous gravitational wave targets

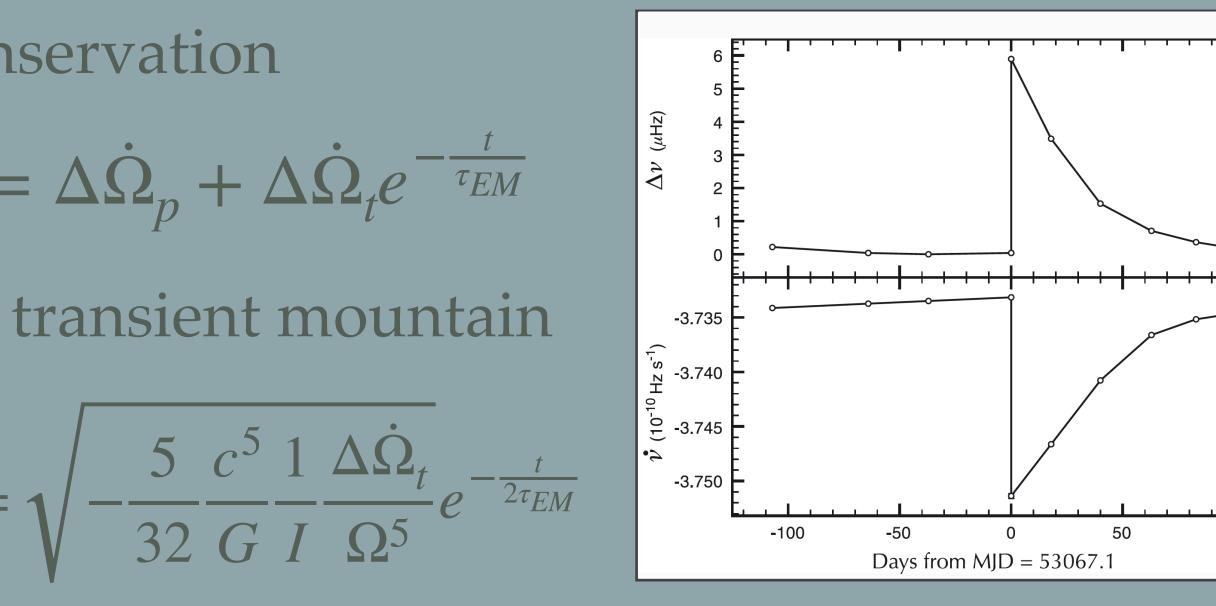
Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers

 $\Delta
u$ (μ Hz) $= \Delta \dot{\Omega}_p + \Delta \dot{\Omega}_t e^{-\frac{t}{\tau_{EM}}}$ -3.735 (10⁻¹⁰ H² s⁻ -3.740 •**1**.01) **1** $\sqrt{\frac{5 c^5 1 \Delta \dot{\Omega}_t}{32 G I \Omega^5}} e^{-\frac{t}{2\tau_{EM}}}$ -3.750 -50 50 -100 0 Days from MJD = 53067.1

Considers angular momentum conservation

Glitch:
$$\Delta \dot{\Omega}(t) = \Delta \dot{\Omega}_p + \Delta \dot{\Omega}_t(t) =$$

Attribute the transient part to a transient mountain


$$I\Delta\dot{\Omega}_{t}(t) = -\frac{32}{5}\frac{G}{c^{5}}I^{2}\Omega^{5}\varepsilon^{2}(t) \quad \rightarrow \quad \varepsilon(t) =$$

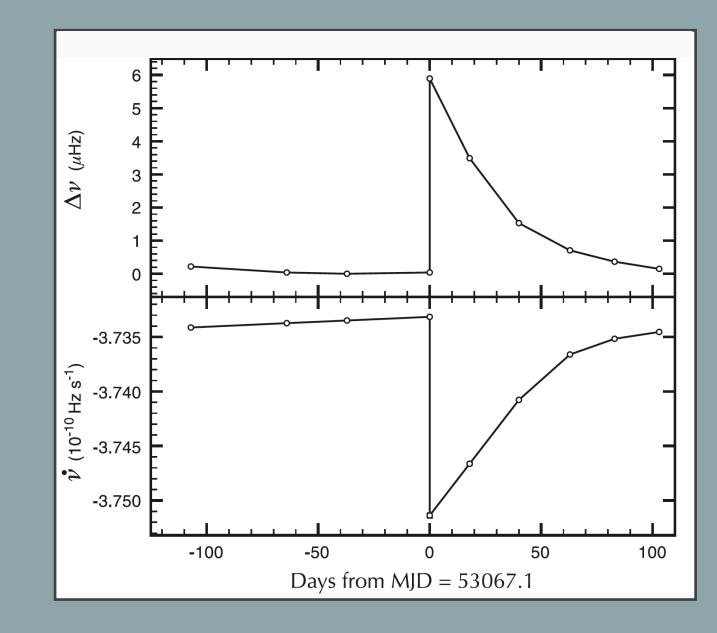
Note: $h_0(t) \propto \varepsilon(t)$ so if $h_0(t) \equiv h_0 e^{-\frac{t}{\tau_{GW}}}$ then $\tau_{GW} = 2\tau_{EM}$

High priority transient continuous gravitational wave targets

Garvin Yim

Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers

and integrate between t = 0 and $t \rightarrow \infty$ to find

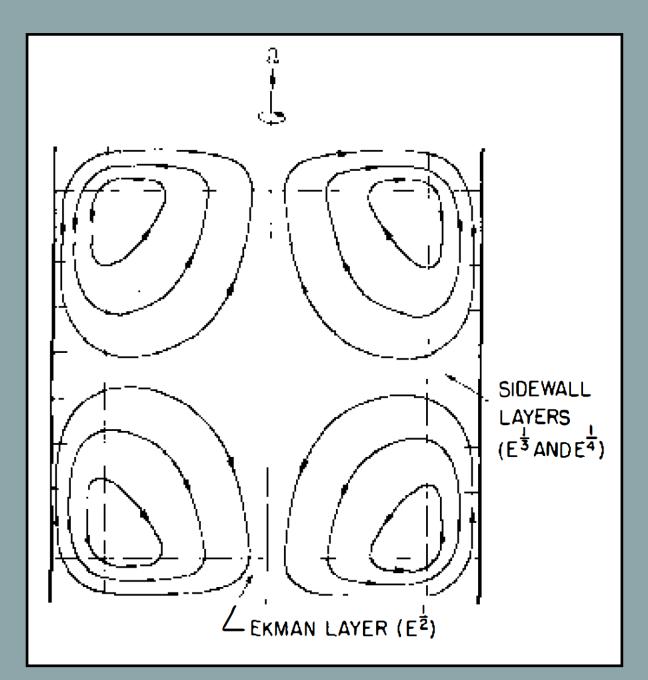

High priority transient continuous gravitational wave targets

Garvin Yim

Summary: Increase in $|\dot{\nu}|$ due to mountain, present until $|\dot{\nu}|$ recovers

Once $\varepsilon(t)$ is obtained from torque balance, can substitute into GW luminosity

 $L_{GW} = \frac{1}{10} \frac{G}{c^5} I^2 \Omega^6 \varepsilon^2(t)$ $E_{GW} = QI\Omega\Delta\Omega$



Model 4: Ekman pumping model

[van Eysden & Melatos 2008, Bennett et al. 2010, Singh 2017]

Credit: Benton & Clark (1974)

Garvin Yim

High priority transient continuous gravitational wave targets

Summary: Tangential forces at a boundary of a viscous fluid causes (non-axisymmetric) meridional flows, sets up mass and current multipoles

 $E_{GW} = \eta I_{crust} \Omega \Delta \Omega$

$\eta = 10^{-7} - 10^{-5}$ from simulations (Singh 2017)

Model 5: Naïve (one component) model [Ho et al. 2020]

$$E_{GW} = I\Omega\Delta\Omega$$

$$E_{GW} = \frac{1}{2} I_s (\Omega_s^2 - \Omega_c^2) \quad \rightarrow \quad E_{GW} = I \Omega \Delta$$

High priority transient continuous gravitational wave targets

Garvin Yim

- Summary: 100% rotational kinetic energy from glitch $\rightarrow E_{GW}$
 - (Assumes $\Delta I = 0$, unlike starquake model)
- Model 6: Naïve (two component) model [Prix et al. 2011, Moragues et al. 2023]
 - Summary: Reservoir of rotational kinetic energy in superfluid component if $\Omega_{s} > \Omega_{c}$
 - Analogous to "CW spin-down limit" but for glitches!

Summary table

	Glitch rise		Post-glitch		Naïve	
	Starquake	Vortex unpinning	Transient mountain	Ekman pumping	One component	Two components
$E_{\rm GW}$	$rac{1}{2}I\Omega\Delta\Omega$	$\frac{1}{2}I(\Delta\Omega)^2\left(\frac{I}{I_{\rm p}}-1\right)$	$QI\Omega\Delta\Omega$	$2\pi\rho_0\Gamma L^5\eta\Omega\Delta\Omega$	$I\Omega\Delta\Omega$	$I\Omega\Delta\Omega$
κ	$\frac{1}{2}$	$\frac{1}{2}\left(\frac{\Delta\Omega}{\Omega}\right)\left(\frac{I}{I_{\rm p}}-1\right)$	Q	$\eta rac{I_{ ext{crust}}}{I}$	1	1

where *k* is defined

Garvin Yim

High priority transient continuous gravitational wave targets

as
$$E_{GW} = \kappa I \Omega^2 \left(\frac{\Delta \Omega}{\Omega} \right)$$

11/23

Summary table

	Glitch rise		Post-glitch		Naïve	
	Starquake	Vortex unpinning	Transient mountain	Ekman pumping	One component	Two components
$E_{\rm GW}$	$rac{1}{2}I\Omega\Delta\Omega$	$\frac{1}{2}I(\Delta\Omega)^2\left(\frac{I}{I_{\rm p}}-1\right)$	$QI\Omega\Delta\Omega$	$2\pi\rho_0\Gamma L^5\eta\Omega\Delta\Omega$	$I\Omega\Delta\Omega$	$I\Omega\Delta\Omega$
κ	$\frac{1}{2}$	$\frac{1}{2} \left(\frac{\Delta\Omega}{\Omega}\right) \left(\frac{I}{I_{\rm p}} - 1\right)$	Q	$\eta rac{I_{ ext{crust}}}{I}$	1	1

where *k* is defined a

Garvin Yim

High priority transient continuous gravitational wave targets

as
$$E_{GW} = \kappa I \Omega^2 \left(\frac{\Delta \Omega}{\Omega} \right)$$

11/23

Part II - Gravitational wave signal analysis

- the signal-to-noise ratio (SNR) ρ in terms of E_{GW} .
- The SNR is defined as: $\rho = \sqrt{h}$

High priority transient continuous gravitational wave targets

Now that we have E_{GW} for different models, we need to find a way to express

$$\overline{|h|}$$
 where $(a|b) = 4\text{Re}\left(\int_{0}^{\infty} \frac{\tilde{a}(f)\tilde{b}^{*}(f)}{S_{n}(f)}df\right)$

- the signal-to-noise ratio (SNR) ρ in terms of E_{GW} .
- The SNR is defined as: $\rho = \sqrt{(h)}$
- Polarisation: $h(t) = F_{+}(t)h_{+}(t) + F_{\times}(t)$

Garvin Yim

High priority transient continuous gravitational wave targets

Now that we have E_{GW} for different models, we need to find a way to express

$$\overline{|h|} \text{ where } (a | b) = 4 \operatorname{Re} \left(\int_{0}^{\infty} \frac{\tilde{a}(f)\tilde{b}^{*}(f)}{S_{n}(f)} df \right)$$
$$t)h_{\mathsf{X}}(t) \text{ where } h_{+,\mathsf{X}}(t) = h_{0}(t) f_{+,\mathsf{X}}(\theta, \iota; t)$$

- the signal-to-noise ratio (SNR) ρ in terms of E_{GW} .
- The SNR is defined as: $\rho = \sqrt{h}$
- Polarisation: $h(t) = F_+(t)h_+(t) + F_{\times}(t)$ $\rightarrow \rho^2 = \beta \frac{1}{S_n(f)} \int_0^{T_{obs}} h_0^2(t) dt$

Garvin Yim

High priority transient continuous gravitational wave targets

Now that we have E_{GW} for different models, we need to find a way to express

$$\overline{|h|}$$
 where $(a|b) = 4\text{Re}\left(\int_{0}^{\infty} \frac{\tilde{a}(f)\tilde{b}^{*}(f)}{S_{n}(f)}df\right)$

$$t)h_{\mathsf{X}}(t)$$
 where $h_{+,\mathsf{X}}(t) = h_0(t) f_{+,\mathsf{X}}(\theta, \iota; t)$

$$\beta = 1$$
 if $F_{+,\times} = \frac{1}{\sqrt{2}}$ (constant), $\theta = \frac{\pi}{2}$ and $\iota = 0$

$$\beta = \frac{4}{25}$$
 if sky and orientation averaged

- Now that we have E_{GW} for different models, we need to find a way to express the signal-to-noise ratio (SNR) ρ in terms of E_{GW} .
- The SNR is defined as: $\rho = \sqrt{(h)}$
- Polarisation: $h(t) = F_{+}(t)h_{+}(t) + F_{\times}(t)$ $\rightarrow \rho^{2} = \beta \frac{1}{S_{n}(f)} \int_{0}^{T_{obs}} h_{0}^{2}(t)dt$

 But for targeted searches, we can d information about sky position.

Garvin Yim

High priority transient continuous gravitational wave targets

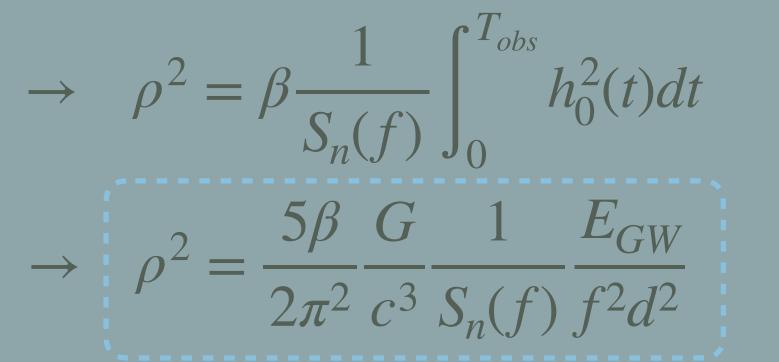
$$\overline{|h|}$$
 where $(a|b) = 4\text{Re}\left(\int_{0}^{\infty} \frac{\tilde{a}(f)\tilde{b}^{*}(f)}{S_{n}(f)}df\right)$

$$t)h_{\mathsf{X}}(t)$$
 where $h_{+,\mathsf{X}}(t) = h_0(t) f_{+,\mathsf{X}}(\theta, t; t)$

$$\beta = 1$$
 if $F_{+,\times} = \frac{1}{\sqrt{2}}$ (constant), $\theta = \frac{\pi}{2}$ and $\iota = 0$

 $\beta = \frac{4}{25}$ if sky and orientation averaged [Jarankowsk & Schutz

But for targeted searches, we can do better. We can, and should, incorporate



Signal-to-noise ratio in terms of E_{GW} [Prix et al. 2011]

- Now that we have E_{GW} for different models, we need to find a way to express the signal-to-noise ratio (SNR) ρ in terms of E_{GW} .
- The SNR is defined as: $\rho = \sqrt{(h)}$
- Polarisation: $h(t) = F_+(t)h_+(t) + F_{\times}(t)$

 But for targeted searches, we can d information about sky position.

Garvin Yim

High priority transient continuous gravitational wave targets

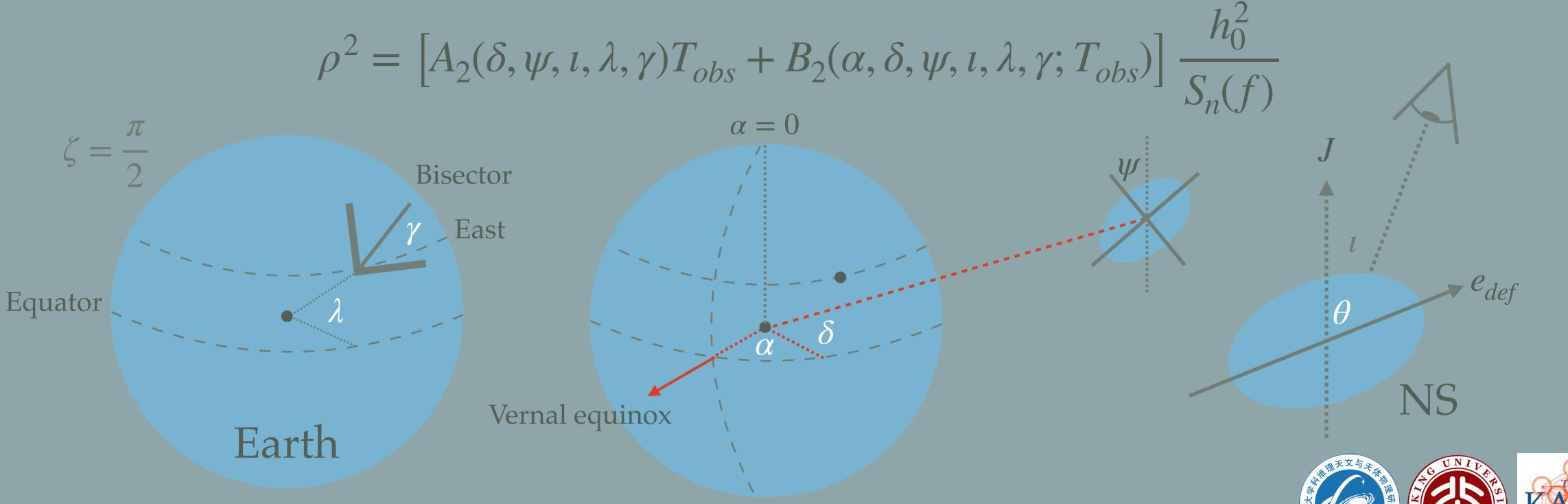
$$\overline{|h|}$$
 where $(a|b) = 4\text{Re}\left(\int_{0}^{\infty} \frac{\tilde{a}(f)\tilde{b}^{*}(f)}{S_{n}(f)}df\right)$

$$t)h_{\mathsf{X}}(t)$$
 where $h_{+,\mathsf{X}}(t) = h_0(t) f_{+,\mathsf{X}}(\theta, t; t)$

$$\beta = 1$$
 if $F_{+,\times} = \frac{1}{\sqrt{2}}$ (constant), $\theta = \frac{\pi}{2}$ and $\iota = 0$

 $\beta = \frac{4}{25}$ if sky and orientation averaged ^{[Jarankowsk} & Schutz

But for targeted searches, we can do better. We can, and should, incorporate



Signal-to-noise ratio from JKS [Jaranowski, Królak & Schutz 1998]

$$\rho^{2} = \left[A_{2}(\delta, \psi, \iota, \lambda, \gamma)T_{obs}\right]$$

Garvin Yim

High priority transient continuous gravitational wave targets

We will now alter the assumptions to allow us to find a more suitable β . We will focus on the $f = 2\nu$ gravitational wave radiation only. Here, $h_0(t) = h_0$.

From Jaranowski, Królak & Schutz (1998), we write down the SNR for $f = 2\nu$:

Transient CW approximation

 $\rho^2 = \left[A_2(\delta, \psi, \iota, \lambda, \gamma)T_{obs}\right]$

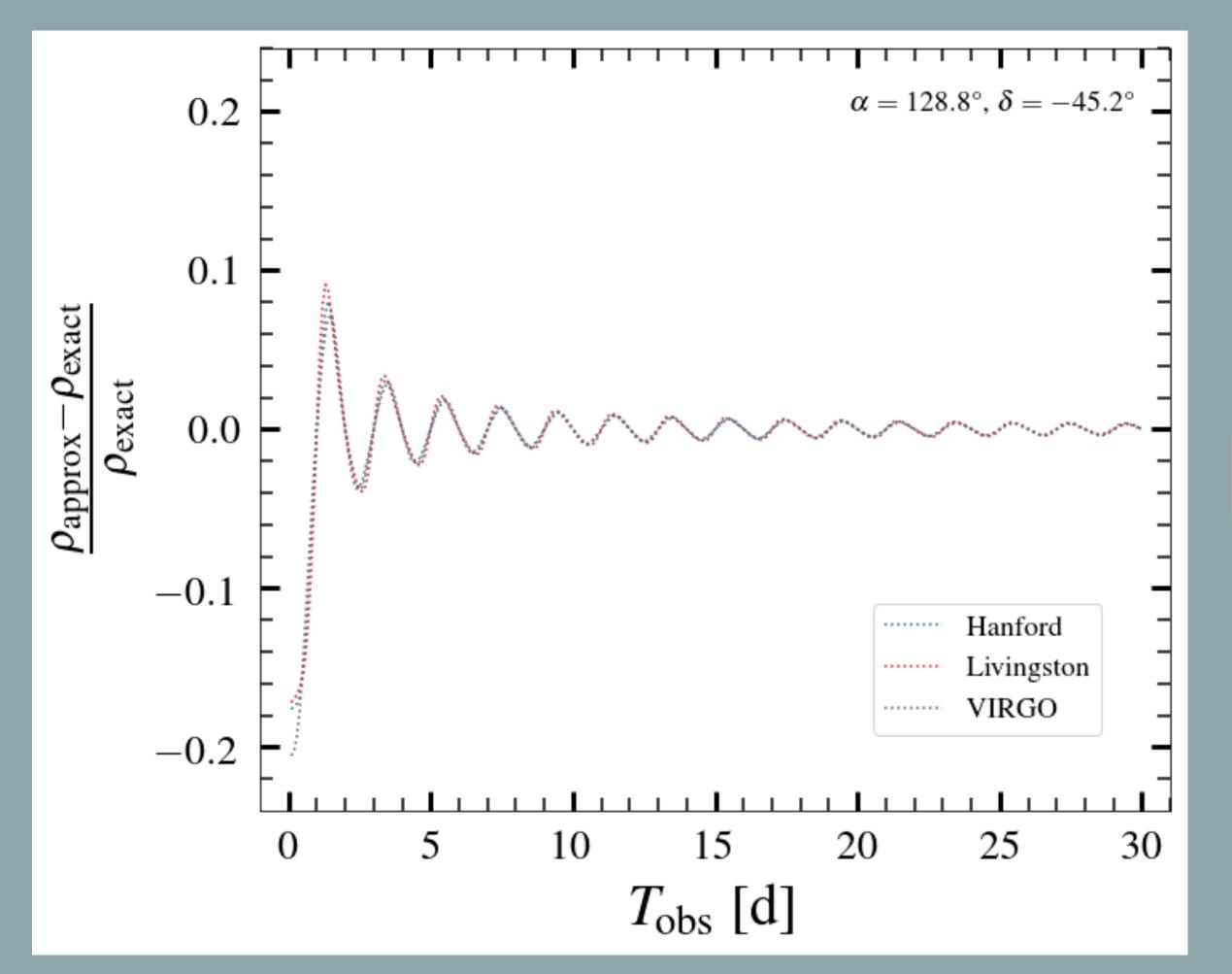
- which was done in JKS.

Comparing to our earlier expression, we find: $\beta = A_2(\delta, \psi, \iota, \lambda, \gamma)$

Garvin Yim

High priority transient continuous gravitational wave targets

+
$$B_2(\alpha, \delta, \psi, \iota, \lambda, \gamma; T_{obs})$$
] $\frac{h_0^2}{S_n(f)}$


Ideally, we want to discard the B_2 term. One could do so by averaging over α ,

Here, we note that for sufficiently long $T_{obs'}$ the A_2T_{obs} term will dominate:

$$\rightarrow \rho^2 = A_2(\delta, \psi, \iota, \lambda, \gamma) \frac{h_0^2 T_{obs}}{S_n(f)}$$

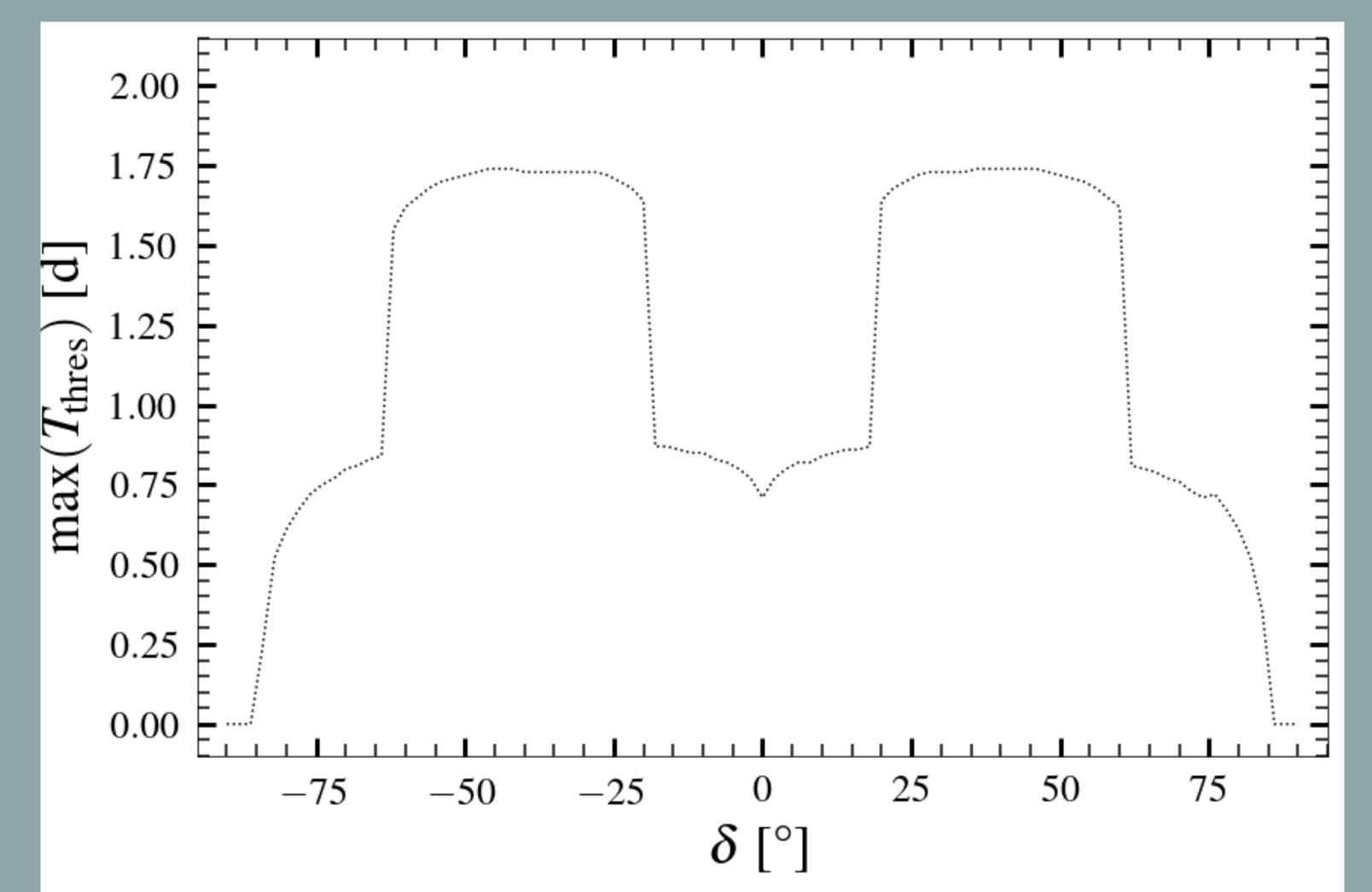
Quantifying the error

Garvin Yim

High priority transient continuous gravitational wave targets

Vela J0835-4510

T_{thres} is the minimum observation time such that the SNR error is less than 10%


 $T_{thres} = 0.77 \text{ d}$

$\max(T_{thres})$ as a function of δ

Garvin Yim

High priority transient continuous gravitational wave targets

Error in SNR will be less than 10% for <u>all</u> (α, δ) so long as $T_{obs} > 1.74 \text{ d}$

Part III - Results

Data information

(naïve, vortex unpinning, transient mountain).

$$E_{GW} \rightarrow \frac{\Delta\Omega}{\Omega}, Q, \frac{I_s}{I}$$

$$\rho \rightarrow \Omega, d, S_n(f)$$

JBCA Glitch Catalogue:
$$\frac{\Delta \Omega}{\Omega}$$

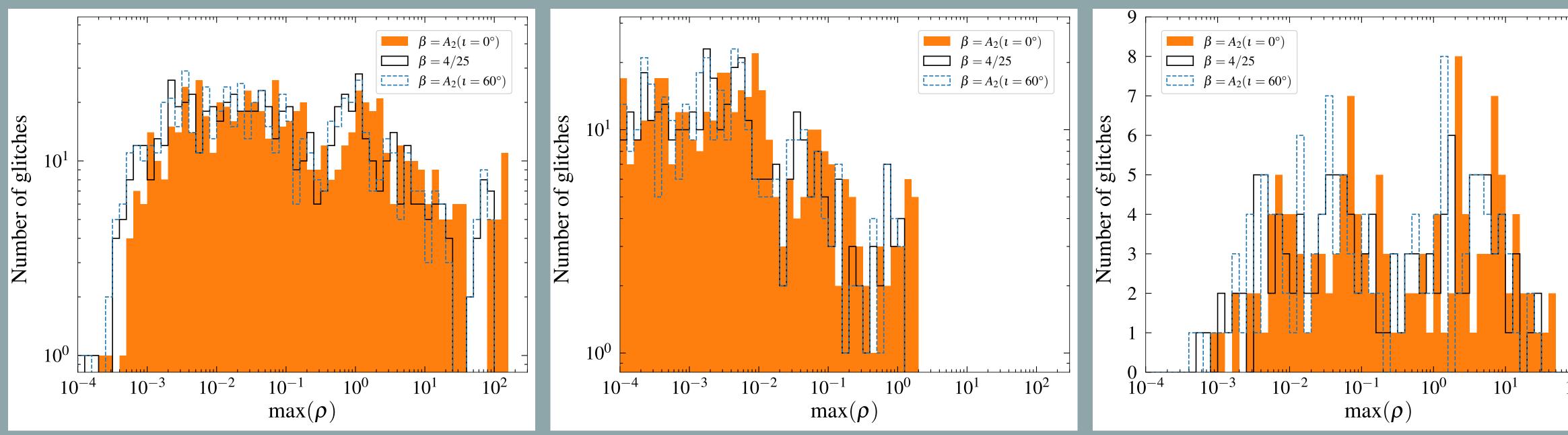
ATNF Glitch Table: $\frac{\Delta \Omega}{\Omega}$, Q

ATNF Pulsar Catalogue: Ω , d

High priority transient continuous gravitational wave targets

Garvin Yim

We can now analytically approximate the SNR from the different models


$$\rho^{2} = \frac{5A_{2}}{2\pi^{2}} \frac{G}{c^{3}} \frac{1}{S_{n}(f)} \frac{E_{GW}}{f^{2}d^{2}}$$

 $S_n(f)$ = Hanford, Livingston and VIRGO in O4

$$\left(\frac{\Delta\Omega}{\Omega}, d\right): 686 \text{ glitches from 219 pulsars}$$
$$\left(\frac{\Delta\Omega}{\Omega}, Q, d\right): 132 \text{ glitches from 57 pulsars}$$

SNR histograms

Garvin Yim

High priority transient continuous gravitational wave targets

Top 15 targets for naïve models

Naïve models										
Pulsar J-name	α [°]	δ [°]	$\nu [{\rm Hz}]$	$\dot{\nu} \; [\text{Hz s}^-1]$	$d \; [\mathrm{kpc}]$	$N_{ m g}$	$\Delta \nu / \nu \ [10^{-9}]$	$\Delta \dot{\nu} / \dot{\nu} \ [10^{-3}]$	$E_{\rm GW}$ [erg]	$\max(ho)$
J0835-4510	128.84	-45.18	11.195	-1.57×10^{-11}	0.280	24	3100	148	1.53×10^{43}	156.3
J0940 - 5428	145.24	-54.48	11.423	-4.29×10^{-12}	0.377	2	1573.9	11	8.11×10^{42}	95.9
J1952 + 3252	298.24	32.88	25.296	-3.74×10^{-12}	3.000	6	1489.9	5.4	3.76×10^{43}	38.5
J0205 + 6449	31.41	64.83	15.217	-4.49×10^{-11}	3.200	9	3800	12	3.47×10^{43}	36.6
J1813 - 1246	273.35	-12.77	20.802	-7.60×10^{-12}	2.635	1	1166	6.4	1.99×10^{43}	34.3
J2229 + 6114	337.27	61.24	19.362	-2.90×10^{-11}	3.000	9	1223.6	13	1.81×10^{43}	30.9
J1105 - 6107	166.36	-61.13	15.822	-3.97×10^{-12}	2.360	5	971.7	0.1	9.60×10^{42}	26.1
J0534+2200	83.63	22.01	29.947	-3.78×10^{-10}	2.000	30	516.37	6.969	1.83×10^{43}	24.0
J1028 - 5819	157.12	-58.32	10.941	-1.93×10^{-12}	1.423	1	2296.5	35	1.09×10^{43}	23.9
J1524 - 5625	231.21	-56.42	12.785	-6.37×10^{-12}	3.378	1	2977	15.5	1.92×10^{43}	22.5
J1531 - 5610	232.87	-56.18	11.876	-1.95×10^{-12}	2.841	1	2637	25	1.47×10^{43}	20.0
J1112 - 6103	168.06	-61.06	15.394	-7.45×10^{-12}	4.464	4	1825	4.7	1.71×10^{43}	18.3
J1617 - 5055	244.37	-50.92	14.418	-2.81×10^{-11}	4.743	6	2068	13.2	1.70×10^{43}	16.0
J1420 - 6048	215.03	-60.80	14.667	-1.79×10^{-11}	5.632	7	2019	6.6	1.71×10^{43}	13.9
J1809–1917	272.43	-19.29	12.084	-3.73×10^{-12}	3.268	1	1625.1	7.8	9.37×10^{42}	13.6

Garvin Yim

High priority transient continuous gravitational wave targets

Top 15 targets for vortex unpinning model

					• 0					
Pulsar J-name	α [°]	δ [°]	$\nu [{\rm Hz}]$	$\dot{\nu} \; [\text{Hz s}^-1]$	$d \; [\mathrm{kpc}]$	$N_{ m g}$	$\Delta \nu / \nu \ [10^{-9}]$	$\Delta \dot{\nu} / \dot{\nu} \ [10^{-3}]$	$E_{\rm GW}$ [erg]	$\max(ho)$
J0835-4510	128.84	-45.18	11.195	-1.57×10^{-11}	0.280	24	3100	148	2.35×10^{39}	1.94
J0940 - 5428	145.24	-54.48	11.423	-4.29×10^{-12}	0.377	2	1573.9	11	$6.32 imes 10^{38}$	0.85
J0205 + 6449	31.41	64.83	15.217	-4.49×10^{-11}	3.200	9	3800	12	$6.53 imes 10^{39}$	0.50
J1952 + 3252	298.24	32.88	25.296	-3.74×10^{-12}	3.000	6	1489.9	5.4	2.78×10^{39}	0.33
J1524 - 5625	231.21	-56.42	12.785	-6.37×10^{-12}	3.378	1	2977	15.5	2.83×10^{39}	0.27
J1813 - 1246	273.35	-12.77	20.802	-7.60×10^{-12}	2.635	1	1166	6.4	$1.15 imes 10^{39}$	0.26
J1028 - 5819	157.12	-58.32	10.941	-1.93×10^{-12}	1.423	1	2296.5	35	$1.23 imes 10^{39}$	0.25
J2229 + 6114	337.27	61.24	19.362	-2.90×10^{-11}	3.000	9	1223.6	13	$1.10 imes 10^{39}$	0.24
J1531 - 5610	232.87	-56.18	11.876	-1.95×10^{-12}	2.841	1	2637	25	$1.92 imes 10^{39}$	0.23
J1105 - 6107	166.36	-61.13	15.822	-3.97×10^{-12}	2.360	5	971.7	0.1	4.62×10^{38}	0.18
J1112 - 6103	168.06	-61.06	15.394	-7.45×10^{-12}	4.464	4	1825	4.7	1.54×10^{39}	0.17
J1617 - 5055	244.37	-50.92	14.418	-2.81×10^{-11}	4.743	6	2068	13.2	1.74×10^{39}	0.16
J1420 - 6048	215.03	-60.80	14.667	-1.79×10^{-11}	5.632	7	2019	6.6	1.71×10^{39}	0.14
J1809 - 1917	272.43	-19.29	12.084	-3.73×10^{-12}	3.268	1	1625.1	7.8	$7.54 imes 10^{38}$	0.12
J0534+2200	83.63	22.01	29.947	-3.78×10^{-10}	2.000	30	516.37	6.969	4.67×10^{38}	0.12

Garvin Yim

High priority transient continuous gravitational wave targets

Vortex unpinning model

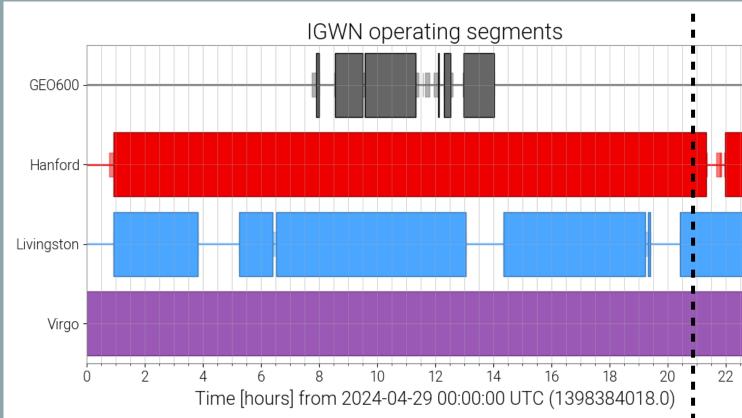
Top 15 targets for transient mountain model

Pulsar J-name	α [°]	δ [°]	$\nu \; [{\rm Hz}]$	$\dot{\nu} \; [{ m Hz \; s^-1}]$	$d \; [\mathrm{kpc}]$	$N_{ m g}$	$\Delta \nu / \nu \ [10^{-9}]$	$\Delta \dot{\nu} / \dot{\nu} \ [10^{-3}]$	Q	$E_{\rm GW}$ [erg]	$\max(\rho)$
J0835-4510	128.84	-45.18	11.195	-1.57×10^{-11}	0.280	24	1805.2	77	0.1684	$1.50 imes 10^{42}$	48.9
J0205 + 6449	31.41	64.83	15.217	-4.49×10^{-11}	3.200	9	5400	52	0.77	$3.80 imes10^{43}$	38.3
J 0534+2200	83.63	22.01	29.947	-3.78×10^{-10}	2.000	30	81	3.4	0.894	2.56×10^{42}	9.0
J0940 - 5428	145.24	-54.48	11.423	-4.29×10^{-12}	0.377	2	1573.9	11	0.0068	$5.51 imes 10^{40}$	7.9
J1617 - 5055	244.37	-50.92	14.418	-2.81×10^{-11}	4.743	6	334	13	0.975	2.67×10^{42}	6.4
J1028 - 5819	157.12	-58.32	10.941	-1.93×10^{-12}	1.423	1	2296.5	35	0.0114	1.24×10^{41}	2.6
J1112 - 6103	168.06	-61.06	15.394	-7.45×10^{-12}	4.464	4	1202	7	0.022	2.47×10^{41}	2.2
J1524 - 5625	231.21	-56.42	12.785	-6.37×10^{-12}	3.378	1	2977.1	15.6	0.0058	$1.11 imes 10^{41}$	1.7
J1531 - 5610	232.87	-56.18	11.876	-1.95×10^{-12}	2.841	1	2637	25	0.007	$1.03 imes 10^{41}$	1.7
J1420 - 6048	215.03	-60.80	14.667	-1.79×10^{-11}	5.632	7	2019	6.6	0.008	$1.37 imes 10^{41}$	1.2
J1809 - 1917	272.43	-19.29	12.084	-3.73×10^{-12}	3.268	1	1625.1	7.8	0.00602	$5.64 imes 10^{40}$	1.1
J1302 - 6350	195.70	-63.84	20.937	-9.99×10^{-13}	2.632	1	2.3		0.36	$1.43 imes 10^{40}$	1.0
J1837 - 0604	279.43	-6.08	10.383	-4.84×10^{-12}	4.779	3	1376	8	0.06	$3.51 imes 10^{41}$	0.9
J1709 - 4429	257.43	-44.49	9.760	-8.86×10^{-12}	2.600	5	2872	8	0.0129	$1.39 imes 10^{41}$	0.8
J1826-1334	276.55	-13.58	9.853	-7.31×10^{-12}	3.606	7	3581	9.6	0.0066	$9.06 imes 10^{40}$	0.5

Garvin Yim

High priority transient continuous gravitational wave targets

Transient mountain model


Breaking news: Vela glitched on 29th April 2024!

- ATel: 16608 (2nd May), 16610, 16611, 16615, 16619
- Glitch time: Between 20:52:11.4 and 20:52:18.1
- ~7 second uncertainty
- $\Delta\Omega/\Omega \approx 2.4 \times 10^{-6}$
- Hanford, Livingston, VIRGO all observing during glitch

	Naïve	Vortex unpinning	Transient mountain
<i>E_{GW}</i> [erg]	1.2×10^{43}	1.4×10^{39}	2.4×10^{42}
$max(\rho)$	137.8	1.5	61.6

Garvin Yim

High priority transient continuous gravitational wave targets

f-mode calculation (Yim & Jones 2023) gives: $\rho = 50, 25, 7, \text{ for}$ Livingston, Hanford and VIRGO (but using $\beta = 1$)

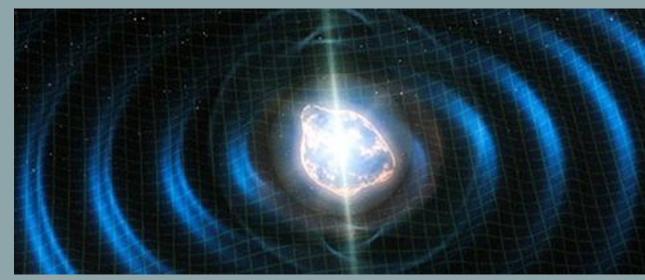
Summary

- The SNR of a transient CW source can be estimated by obtaining E_{GW} .
- We explored 6 different models associated with pulsar glitches.
- For a sufficiently long transient CW, we can make a better estimate of the SNR by including the pulsar's sky position information.
- In O4, we will start putting upper limits on some of these models. As shown, this can already be done with Vela's latest glitch!
- Must start considering what physics can be learnt from a (non-)detection: superfluidity, elasticity / plastic flow, viscosity, magnetic diffusion, temperature gradients, etc...

High priority transient continuous gravitational wave targets

Garvin Yim

Continuous Waves School at KIAA, PKU


- 7th 11th July (FPS13/SPSS2024 begins on 12th)
- Invited lecturers:
 - Prof. Maria Alessandra Papa (Albert Einstein Institute)
 - Prof. Ian Jones (University of Southampton)
 - Dr. David Keitel (University of the Balearic Islands)
 - Dr. Lilli Sun (Australian National University)
 - Plus 6 guest speakers
- Speak with me if you are interested spaces are limited!
- Email: g.yim@pku.edu.cn
- Website (needs VPN): <u>https://garvinyim.wixsite.com/home/cw-school-at-kiaa</u>
- Website (accessible): <u>https://cwschool2024.kiaa-pku.cn/</u>

Garvin Yim

High priority transient continuous gravitational wave targets

