

Dialogue at the Dream Field 2024 May 10–15, 2024, Huaxi Guest Hotel &FAST– Light Years Away, Guizhou, China

The equation of state for the massive neutron stars

Jinniu Hu (胡金牛) School of Physics, Nankai University

hujinniu@nankai.edu.cn

12/05/2024

- □ Introduction
- □ The massive neutron star from DDRMF
- □ The equation of state from machine learning
- □ Summary

The remnants of SN1987A

Webb Finds Evidence for Neutron Star at Heart of Young Supernova Remnant

Credits from NASA

12/05/2024

The radii and masses

Shapiro delay measurement

The massive neutron star PSR J1614-2230 (1.928±0.017 M \odot), P. B. Demorest, et al., Nature. 467(2010)108 E. Fonseca et al., Astrophys. J. 832, 167 (2016). PSR J0348+0432 (2.01±0.04 M \odot), P. J. Antoniadis et al., Science 340, 1233232 (2013). PSR J0740+6620 (2.08±0.07 M \odot) H. T. Cromartie et al., Nat. Astron. 4, 72 (2020) M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28

Neutron Star Interior Composition Explorer

The NICER Measurement PSR J0740+6620 (2.08±0.07 Mo,

12.35±0.75 km) H. T. Cromartie et al., Nat. Astron. 4, 72 (2020) M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 PSR J0030+0451 (1.44±0.15M☉,

13.02±1.24 km) M. C. Miller et al. Astrophys. J. Lett. 887(2019)L42

Neutron star structure

TOV equation

Tolman-Oppenheimer-Volkoff equation

12/05/2024

Jinniu Hu

副大学

The equations of state

L. McLerran and S. Reddy Phys. Rev. Lett.122 (2019)122701

1

Astrophys. 54 (2016)401

Unified framework in nuclear physics

周大学

- □ Introduction
- □ The massive neutron star from DDRMF
- □ The equation of state from machine learning
- □ Summary

The GW190814-2.6M $_{\odot}$ object

THE ASTROPHYSICAL JOURNAL LETTERS, 896:L44 (20pp), 2020 June 20 © 2020. The American Astronomical Society. OPEN ACCESS https://doi.org/10.3847/2041-8213/ab960f

F. Oezel and P. Freire Annu. Rev. Astron. Astrophys. 54 (2016)401

12/05/2024

The Lagrangian of DDRMF model

$$\begin{aligned} \mathcal{L}_{DD} &= \sum_{i=p, n} \overline{\psi}_i \left[\gamma^{\mu} \left(i \partial_{\mu} - \Gamma_{\omega}(\rho_B) \omega_{\mu} - \frac{\Gamma_{\rho}(\rho_B)}{2} \gamma^{\mu} \vec{\rho}_{\mu} \vec{\tau} \right) - \left(M - \Gamma_{\sigma}(\rho_B) \sigma - \Gamma_{\delta}(\rho_B) \vec{\delta} \vec{\tau} \right) \right] \psi_i \\ &+ \frac{1}{2} \left(\partial^{\mu} \sigma \partial_{\mu} \sigma - m_{\sigma}^2 \sigma^2 \right) + \frac{1}{2} \left(\partial^{\mu} \vec{\delta} \partial_{\mu} \vec{\delta} - m_{\delta}^2 \vec{\delta}^2 \right) \\ &- \frac{1}{4} W^{\mu\nu} W_{\mu\nu} + \frac{1}{2} m_{\omega}^2 \omega_{\mu} \omega^{\mu} - \frac{1}{4} \vec{R}^{\mu\nu} \vec{R}_{\mu\nu} + \frac{1}{2} m_{\rho}^2 \vec{\rho}_{\mu} \vec{\rho}^{\mu}, \end{aligned}$$

The density dependent coupling constants

for σ and ω mesons $\Gamma_i(\rho_B) = \Gamma_i(\rho_{B0})f_i(x)$, with $f_i(x) = a_i \frac{1 + b_i(x + d_i)^2}{1 + c_i(x + d_i)^2}$, $x = \rho_B/\rho_{B0}$,

for ρ and δ mesons

 $\Gamma_i(\rho_B) = \Gamma_i(\rho_{B0}) \exp[-a_i(x-1)].$

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 904(2020)39

周大學

The Lagrangian of DDRMF model

$$\mathcal{L}_{DD} = \sum_{i=p, n} \overline{\psi}_i \left[\gamma^{\mu} \left(i \partial_{\mu} - \Gamma_{\omega}(\rho_B) \omega_{\mu} - \frac{\Gamma_{\rho}(\rho_B)}{2} \gamma^{\mu} \vec{\rho}_{\mu} \vec{\tau} \right) - \left(M - \Gamma_{\sigma}(\rho_B) \sigma - \Gamma_{\delta}(\rho_B) \vec{\delta} \vec{\tau} \right) \right] \psi_i$$

$$+\frac{1}{2}\left(\partial^{\mu}\sigma\partial_{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}\right) + \frac{1}{2}\left(\partial^{\mu}\vec{\delta}\partial_{\mu}\vec{\delta} - m_{\delta}^{2}\vec{\delta^{2}}\right) \\ -\frac{1}{4}W^{\mu\nu}W_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\vec{R}^{\mu\nu}\vec{R}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu},$$

The density dependent coupling constants

周大

for σ and ω mesons $\Gamma_i(\rho_B) = \Gamma_i(\rho_{B0})f_i(x), \text{ with } f_i(x) = a_i \frac{1 + b_i(x + d_i)^2}{1 + c_i(x + d_i)^2}, \ x = \rho_B/\rho_{B0},$

for ρ and δ mesons

 $\Gamma_i(\rho_B) = \Gamma_i(\rho_{B0}) \exp[-a_i(x-1)].$

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 904(2020)39

Density-dependent RMF model

1	$\Delta E_{\rm rms}$ (MeV) 2	$\frac{\Delta(S_{2n})_{\rm rms}}{({\rm MeV})}$	$\frac{\Delta(S_{2p})_{\rm rms}}{({\rm MeV})}$	$\Delta(r_{\rm ch})_{\rm rms}$ (fm) 5	<i>K</i> ₀ (MeV) 6	J (MeV) 7	<i>L</i> ₀ (MeV) 8
DD-ME2 [22]	2.436 (2.300)	1.056 (0.854)	0.949 (0.750)	0.0266 (0.0262)	250.9	32.9	49.4
DD-MEX [18]	2.849 (2.963)	1.095 (0.972)	0.978 (0.847)	0.0247 (0.0249)	267.0	32.9	47.8
DD-MEX1	1.637 (1.539)	1.045 (0.873)	0.896 (0.704)	0.0261 (0.0263)	291.8	32.5	51.8
DD-MEX2	2.236 (1.791)	1.228 (0.913)	1.271 (0.928)	0.0466 (0.0488)	255.8	35.9	85.3
DD-MEY	1.734 (1.414)	1.259 (0.876)	1.026 (0.755)	0.0264 (0.0244)	265.8	32.8	51.8

A. Taninah and A. V. Afanasjev, Phys. Rev. C107(2023)L041301

12/05/2024

Jinniu Hu

副大

The saturation properties of SNM

	Saturation density	Binding energy per nucleon		Symmetry energy	Slope of Symmetry energy	Effective Mass	
	$\rho_{\rm B0}[{\rm fm}^{-3}]$	E/A[MeV]	K_0 [MeV]	$E_{\rm sym}[{\rm MeV}]$	L_0 [MeV]	M_n^*/M	M_p^*/M
DD-LZ1	0.1581	-16.0598	231.1030	31.3806	42.4660	0.5581	0.5581
DD-MEX	0.1519	-16.0973	267.3819	32.2238	46.6998	0.5554	0.5554
DD-MEX1	0.1505	-16.0368	291.1968	31.8312	53.4254	0.5709	0.5709
DD-MEX2	0.1520	-16.0376	255.0925	35.2921	86.8244	0.5780	0.5780
DD-MEXY	0.1535	16.0243	367.9365	32.0355	53.2101	0.5811	0.5811
DD-ME2	0.1520	-16.1418	251.3062	32.3094	51.2653	0.5718	0.5718
DD-ME1	0.1522	-16.2328	245.6657	33.0899	55.4634	0.5776	0.5776
DD2	0.1491	-16.6679	242.8509	31.6504	54.9529	0.5627	0.5614
PKDD	0.1495	-16.9145	261.7912	36.7605	90.1204	0.5713	0.5699
TW99	0.1530	-16.2472	240.2022	32.7651	55.3095	0.5549	0.5549
DDV	0.1511	-16.9279	239.9522	33.5969	69.6813	0.5869	0.5852
DDVT	0.1536	-16.9155	239.9989	31.5585	42.3414	0.6670	0.6657
DDVTD	0.1536	-16.9165	239.9137	31.8168	42.5829	0.6673	0.6660

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 904(2020)39 K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Nucl. Phys. Rev. 39(2022)35

12/05/2024	Jinniu Hu

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 904(2020)39

	DD-LZ1	DD2	DD-ME1	DD-M <mark>E</mark> 2	DD-MEX	DDV	DDVT	DDVTD
$M_{ m max}/M_{\odot}$	2.5545	2.4168	2.4426	2.48 <mark>2</mark> 9	2.55 <mark>66</mark>	1.9317	1.9251	1.8507
$R_{\rm max}[{ m km}]$	12.178	11.826	11.885	12.0 <mark>1</mark> 2	12.274	10.336	10.023	9.850
$ ho_{\rm max} [{\rm fm}^{-3}]$	0.786	0.845	0.832	0.8 <mark>1</mark> 3	0.777	1.188	1.237	1.306
$R_{1.4}[\mathrm{km}]$	12.864	12.938	12.931	12.9 <mark>6</mark> 1	13.1 <mark>18</mark>	12.195	11.511	11.396
$\Lambda_{1.4}$	727.071	639.032	686.786	730.7 <mark>3</mark> 7	790.051	390.005	301.388	274.908

12/05/2024

Strangeness degree of freedom

12/05/2024

Jinniu Hu

副大學

The coupling strengths

The interaction between vector mesons and baryons

$$\Gamma_{\omega\Lambda} = \Gamma_{\omega\Sigma} = 2\Gamma_{\omega\Xi} = \frac{2}{3}\Gamma_{\omega N},$$

$$2\Gamma_{\phi\Sigma} = \Gamma_{\phi\Xi} = -\frac{2\sqrt{2}}{3}\Gamma_{\omega N}, \ \Gamma_{\phi N} = 0,$$

$$\Gamma_{\rho\Lambda} = 0, \ \Gamma_{\rho\Sigma} = 2\Gamma_{\rho\Xi} = 2\Gamma_{\rho N},$$

$$\Gamma_{\delta\Lambda} = 0, \ \Gamma_{\delta\Sigma} = 2\Gamma_{\delta\Xi} = 2\Gamma_{\delta N}.$$

The hyperon-nucleon potentials

 $U_Y^N(\rho_{B0}) = -R_{\sigma Y}\Gamma_{\sigma N}(\rho_{B0})\sigma_0 + R_{\omega Y}\Gamma_{\omega N}(\rho_{B0})\omega_0,$

Empirical potential values

 $U_{\Lambda}^{N} = -30 \text{ MeV}, \qquad U_{\Sigma}^{N} = +30 \text{ MeV} \qquad U_{\Xi}^{N} = -14 \text{ MeV}$

The hyperon-hyperon potentials

 $U^{\Lambda}_{\Lambda}(\rho_{B0}) = -R_{\sigma\Lambda}\Gamma_{\sigma N}(\rho_{B0})\sigma_{0} - R_{\sigma^{*}\Lambda}\Gamma_{\sigma N}(\rho_{B0})\sigma_{0}^{*} + R_{\omega Y}\Gamma_{\omega N}(\rho_{B0})\omega_{0} + R_{\phi\Lambda}\Gamma_{\omega N}(\rho_{B0})\phi_{0},$

 $U^{\Lambda}_{\Lambda}(\rho_{B0}) = -10 \text{ MeV},$

The hyperonic star

The radius-mass relation of neutron star and hyperonic star

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Nucl. Phys. Rev. 39(2022)35

12/05/2024

Jinniu Hu

周大學

The equations of state for hyperonic star

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Nucl. Phys. Rev. 39(2022)35

The correlations between the coupling strengths

Y. T. Rong, Z. H. Tu, S. G. Zhou, Phys. Rev. C 104(2021)054321

The Mass-radius relation with different the coupling strengths

12/05/2024

- □ Introduction
- □ The massive neutron star from DDRMF
- The equation of state from machine learning
- □ Summary

> Parametric Bayesian inference

- F. Özel, G. Baym, and T. Güver, Phys. Rev. D 82 (2010) 101301(R)
- A. W. Steiner, J. M. Lattimer, and E. Brown, Astrophys. J 722(2010)33
- D. Alvarez-Castillo, et al. Eur. Phys. J. A 52 (2016) 69
- Z. Miao, J. L. Jiang, A. Li, and L. W. Chen, Astrophys. J. Lett. 917 (2021) L22

> Nonparametric Bayesian inference

P.Landry and R. Essick, Phys. Rev. D 99 (2019) 084049 P.Landry, R. Essick, and K. Chatziioannou, Phys. Rev. D 101 (2020) 123007

Support Vector Machine

P. Magierski and P. H. Heenen, Phys. Rev. C 65(2002)045804

Deep neutral network (Parametric EOS)

Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019
Y. Fujimoto, K. Fukushima, K. Murase, JHEP, 2021 (2021) 1
D. Farrell, et al. arXiv: 2209.02817

Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019

12/05/2024

國南周大學

Assume the function K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 935(2022)88

to satisfy

$$\begin{bmatrix} f(x_1) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu(x_1) \\ \mu(x_2) \\ \vdots \\ \mu(x_n) \end{bmatrix}, \begin{bmatrix} \kappa(x_1, x_1) & \kappa(x_1, x_2) & \dots & \kappa(x_1, x_n) \\ \kappa(x_2, x_1) & \kappa(x_2, x_2) & \dots & \kappa(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \kappa(x_n, x_1) & \kappa(x_n, x_2) & \dots & \kappa(x_n, x_n) \end{bmatrix} \right)$$

The observation data is

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_n, y_n)$$

The prediction value of f is

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \\ \hline f(x_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \hline 0 \\ \hline 0 \end{bmatrix}, \begin{bmatrix} \kappa(x_1, x_1) & \kappa(x_1, x_2) & \dots & \kappa(x_1, x_n) & \kappa(x_1, x_*) \\ \kappa(x_2, x_1) & \kappa(x_2, x_2) & \dots & \kappa(x_2, x_n) & \kappa(x_2, x_*) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \kappa(x_n, x_1) & \kappa(x_n, x_2) & \dots & \kappa(x_n, x_n) & \kappa(x_n, x_*) \\ \hline \kappa(x_*, x_1) & \kappa(x_*, x_2) & \dots & \kappa(x_n, x_*) & \kappa(x_*, x_*) \end{bmatrix} \right)$$

12/05/2024

It can be use the matrix notation

$$\begin{bmatrix} \mathbf{y} \\ f(x_{\star}) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{0} \\ 0 \end{bmatrix}, \begin{bmatrix} K(\mathbf{X}, \mathbf{X}) & K(x_{\star}, \mathbf{X}) \\ K(\mathbf{X}, x_{\star}) & K(x_{\star}, x_{\star}) \end{bmatrix} \right)$$

where the mean function is zero for notational simplicity.

The distribution of prediction point can be obtained

$f(x_{\star}) \mid \mathbf{y} \sim \mathcal{N}\left(K(x_{\star}, \mathbf{X}) K(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}, K(x_{\star}, x_{\star}) - K(x_{\star}, \mathbf{X}) K(\mathbf{X}, \mathbf{X})^{-1} K(\mathbf{X}, x_{\star}) \right)$

12/05/2024

The EOSs from the neural network

The EOSs from the neural network

W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 950(2023)186

阁

12/05/2024

- □ Introduction
- □ The massive neutron star from DDRMF
- □ The equation of state from machine learning
- □ Summary

國南國大學

The neutron star is a natural laboratory to check the nuclear many-body methods

Equations of state of massive neutron star can be described within DDRMF model.

The masses of hyperonic star can approach two times solo mass.

A nonprameretric method was proposed to infer the equation of state of compact star with deep neural network.

Thank you very much for your attention!

The neutron star mass as function of Radius

The symmetry energy affects the neutron star at small mass region

12/05/2024

The tidal deformability

J. N. Hu, et al., Prog. Theo. Exp. Phys., 2020 (2020) 043D01

The tidal deformability as a function of neutron mass

12/05/2024

國南國大學

Fermi-Dirac distribution

$$f_{i\pm}^k = \{1 + \exp\left[(\sqrt{k^2 + M^{*2}} \mp \nu_i)/T\right]\}^{-1},$$

The number density of protons or neutrons

$$n_i = \frac{1}{\pi^2} \int_0^\infty dk \; k^2 (f_{i+}^k - f_{i-}^k).$$

The energy density

$$\begin{split} \epsilon &= \sum_{i=p,n} \frac{1}{\pi^2} \int_0^\infty dk \; k^2 \; \sqrt{k^2 + M^{*2}} (f_{i+}^k + f_{i-}^k) \\ &+ \frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{3} g_2 \sigma^3 + \frac{1}{4} g_3 \sigma^4 \\ &+ \frac{1}{2} m_\omega^2 \omega^2 + \frac{3}{4} c_3 \omega^4 + \frac{1}{2} m_\rho^2 \rho^2 + 3 \Lambda_{\rm v} (g_\omega^2 \omega^2) (g_\rho^2 \rho^2), \end{split}$$

12/05/2024

New DDRMF parameterizations

DD-LZ1

大

副

Density-dependent coupling constants

isity-depen	dent co	oupli	ng	cons	tan	ts			了译	大	
002	m [MoV]	DD-LZ1		DD2	DD-ME1	DD-ME2	DD-MEX	DDV	DDVT	DDVTD	
	$m_p[\text{MeV}]$ $m_p[\text{MeV}]$	938.900000 938.900000	m_p	939.30330 938.27203	939.0000 939.0000	939.0000 939.0000	939.0000 939.0000	938.272081	938.272081	938.272081	
DD-ME1	$m_{\sigma}[{ m MeV}]$ $m_{\omega}[{ m MeV}]$	538.619216 783.0000	m_{σ} m_{ω}	546.212459 783.0000	549.5255 783.0000	550.1238 783.0000	547.3327 783.0000	537.600098 783.0000	502.598602 783.0000	502.619843 783.0000	
DD-ME2	$m_{\rho}[\text{MeV}]$ $m_{\delta}[\text{MeV}]$ $\Gamma_{\sigma}(0)$	769.0000 — 12.001429	$m_{ ho}$ m_{δ} $\Gamma_{\sigma}(\rho_{R0})$	763.0000 — 10.686681	763.0000 — 10 4434	763.0000 — 10.5396	763.0000 — 10.7067	763.0000 — 10 136960	763.0000 — 8.382863	763.0000 980.0000 8.379269	
DD-MEX	$\Gamma_{\omega}(0)$ $\Gamma_{\rho}(0)$ $\Gamma_{\rho}(0)$	$14.292525 \\15.150934$	$\Gamma_{\omega}(\rho_{B0})$ $\Gamma_{\omega}(\rho_{B0})$ $\Gamma_{\rho}(\rho_{B0})$	13.342362 7.25388	12.8939 7.6106	13.0189 7.3672	13.3388 7.2380	$12.770450 \\ 7.84833$	10.987106 7.697112	10.980433 8.06038	
DD-1 7 1	$\frac{\Gamma_{\delta}(0)}{\rho_{B0}[\text{fm}^{-3}]}$ a_{σ}	0.158100 1.062748	$\frac{\Gamma_{\delta}(\rho_{B0})}{\rho_{B0}}$ a_{σ}	0.149	0.152 1.3854	0.152	0.153	0.1511 1.20993	0.1536	0.8487420 0.1536 1.19643	
	b_{σ} c_{σ} d	1.763627 2.308928 0.379957	b_{σ} c_{σ}	0.634442 1.005358 0.575810	0.9781 1.5342 0.4661	1.0943 1.7057 0.4421	1.3350 2.0671 0.4016	0.21286844 0.30798197 1.04034342	0.19210314 0.27773566 1.09552817	0.19171263 0.27376859 1.10343705	
	a_{ω}	1.059181	a_{ω}	1.369718	1.3879	1.3892	1.3936	1.23746	1.16084	1.16693	
DDVT	c_{ω} c_{ω} d_{ω}	0.418273 0.538663 0.786649	c_{ω} c_{ω}	0.490475 0.817753 0.638452	1.3566 0.4957	0.3240 1.4620 0.4775	1.6060 0.4556	0.03911422 0.07239939 2.14571442	0.04439850 0.06721759 2.22688558	0.04233010 2.80617483	
DDVTD	$a_ ho a_\delta$	0.776095	$a_{ ho}$ a_{δ}	0.518903	0.5008	0.5647	0.6202	0.35265899	0.54870200	0.55795902 0.55795902	

12/05/2024