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Webb Finds Evidence for Neutron Star 
at Heart of Young Supernova Remnant

The remnants of SN1987A

Credits from NASA
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The radii and masses
Neutron Star Interior Composition Explorer

The massive neutron star 
PSR J1614-2230 (1.928±0.017 M⊙),       
P. B. Demorest, et al., Nature. 467(2010)108 
E. Fonseca et al., Astrophys. J. 832, 167 (2016).   

PSR J0348+0432 (2.01±0.04 M⊙),  
 P. J. Antoniadis et al., Science 340, 1233232 (2013). 

PSR J0740+6620 (2.08±0.07 M⊙) 
H. T. Cromartie et al., Nat. Astron. 4, 72 (2020)  
M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 

The NICER Measurement 
PSR J0740+6620 (2.08±0.07 M⊙, 

                              12.35±0.75 km) 
H. T. Cromartie et al., Nat. Astron. 4, 72 (2020)  
M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 

PSR J0030+0451 (1.44±0.15M⊙, 

                              13.02±1.24 km)  
M. C. Miller et al. Astrophys. J. Lett. 887(2019)L42

Shapiro delay measurement



12/05/2024 Jinniu Hu 5

Courtesy of W.G. Newton

M. E. Caplan and C. J. Horowitz,  
Rev. Mod. Phys. 89(2017)041002

NUCLEAR “PASTA” STRUCTURES IN LOW-DENSITY . . . PHYSICAL REVIEW C 88, 025801 (2013)

TABLE I. Parameter set used in the RMF model.

gσN gωN gρN
b c mσ (MeV) mω (MeV) mρ (MeV)

6.3935 8.7207 4.2696 0.008659 −0.002421 400 783 769

within the Thomas-Fermi approximation,

µn =
√

kF,n(r)2 + m∗
N (r)2 + gωNω0(r) − gρNR0(r), (6)

µp =
√

kF,p(r)2 + m∗
N (r)2 + gωNω0(r)

+ gρNR0(r) − VCoul(r), (7)

ρe(r) = (µe − VCoul(r))3/3π2, (8)

where the local Fermi momentum kF,i(r) is simply related
to the density, k3

F,i(r)/(3π2) = ρi(r). Finally, baryon-number
conservation and charge neutrality are imposed besides these
equations. We use the same set of parameters as in Ref. [39]
listed in Table I, in order to compare the equation of state
(EOS) and structural changes of the pasta structure with
and without the WS approximation. With these parameters,
we can reproduce the properties of uniform nuclear matter
shown in Table II. The first and second quantities, ρ0 and
ε0, are the saturation density of symmetric nuclear matter
(≈ 0.16 fm−3) and its energy per nucleon, respectively. The
third and forth quantities, K and S0, are the incompressibility
and symmetry energy at ρ0, respectively. The last one, L,
is the slope parameter of symmetry energy at ρ0. By using
these parameters the binding energy per nucleon around the
saturation density is expressed as

E

A
= ε0 + K(ρ − ρ0)2

18ρ2
0

+
[
S0 + L(ρ − ρ0)

3ρ0

]
(1 − 2Yp)2.

(9)

To numerically simulate the nonuniform structure of infinite
matter, we use a cubic cell with a periodic boundary condition.
If the cell size is small and includes only one or two units of
the structure, the geometrical shape should be affected by the
boundary condition and the appearance of some structures is
implicitly suppressed. Therefore, the cell size should be so
large as to include several units of the pasta structure. We
divide the cell into three-dimensional grids. The desirable grid
width should be so small as to describe the detailed density
distribution, particularly at the nuclear surface. Due to this
requirement, we set the grid width to 0.3 fm at the largest. This
grid width is small enough to give an energy difference within
2 keV from that with 0.1 fm. Given the average baryon-number
density ρB , the initial density distributions of fermions are
randomly prepared on each grid point. Then proper density
distributions and the meson mean fields are searched for
until the chemical potentials are independent of the position.

TABLE II. EOS of uniform nuclear matter.

ρ0 (fm−3) ε0 (MeV) K (MeV) S0 (MeV) L (MeV)

0.153 −16.4 240 33.4 84

More detailed numerical procedures and treatment with a local
chemical potential will be discussed in the Appendix.

III. RESULTS

A. Fixed proton number fraction

First, we present here some results for fixed proton number
fraction Yp with Yp = 0.5 (symmetric nuclear matter), 0.3, and
0.1, which are roughly relevant to supernovae and neutron-star
crust. Shown in Fig. 1 are the proton density distributions in
cold symmetric matter. We can see that the typical pasta phases
with rods, slabs, tubes, and bubbles, in addition to spherical
nuclei (droplets), are reproduced by our calculation in which
no assumption on the structures was used. Furthermore,
these cells include several units and we can specify these
lattice structures. The crystalline configuration of droplets
and bubbles is fcc; rods and tubes exhibit a honeycomb
configuration.

No exotic mixtures appear as ground states at any density.
In a droplet, we have seen that the proton density is highest
near the surface due to Coulomb repulsion, while the neutron
density distribution is flat inside the droplet. Note that baryon
density outside the droplets is zero for Yp = 0.3 and 0.5.
Electron density is spread over all space but slightly localized

FIG. 1. (Color online) Proton density distributions in the ground
states of symmetric matter (Yp = 0.5). Typical pasta phases are
observed: (a) Spherical droplets with an fcc crystalline configuration
at baryon density ρB = 0.01 fm−3, of 98 fm each side. (b) Cylindrical
rods with a honeycomb crystalline configuration at 0.024 fm−3,
of 76 fm each side. (c) Slabs at 0.05 fm−3, of 95 fm each side.
(d) Cylindrical tubes with a honeycomb crystalline configuration at
0.08 fm−3, of 79 fm each side. (e) Spherical bubbles with an fcc
crystalline configuration at 0.09 fm−3, of 97 fm each side.

025801-3

M.Okamoto, T.Maruyama, K.Yabana, 
T.Tatsumi, Phys. Rev. C 88 (2013) 025801 

Neutron star structure
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Tolman–Oppenheimer–Volkoff equation
Relativistic stars

Hydrostatic equilibrium equations in General Relativity:

dP
dr

= −
GρM(r)

r2

(

1+
P

ρc2

)(

1+
4πPr3
M(r)c2

)(

1− 2GM(r)
c2r

)−1

M(r) = 4π
∫ r

0
ξ2ρ(ξ)dξ

ρ(r) = ε(r)/c2

Boundary conditions:
P(0) = P0, M(0) = 0
P(R) = 0, M(R) = M < Amb

M is called the gravitational mass.

Relativistic stars
Hydrostatic equilibrium equations in General Relativity:

dP
dr

= −
GρM(r)

r2

(

1+
P

ρc2

)(

1+
4πPr3
M(r)c2

)(

1− 2GM(r)
c2r

)−1

M(r) = 4π
∫ r

0
ξ2ρ(ξ)dξ

ρ(r) = ε(r)/c2

Boundary conditions:
P(0) = P0, M(0) = 0
P(R) = 0, M(R) = M < Amb

M is called the gravitational mass.

NUCLEAR EOS AND NEUTRON STAR MASSES 49

Figure 1: (a) Schematic hadronic (solid curve) and pure strange quark matter

(dashed curve) equations of state. (b) The correspondingM�R relations. Arrows

connect specific central energy density and pressure values with their correspond-

ing (M,R) points. The numbers labelling hadronic arrows denote central baryon

densities (nc/ns) and those labelling strange quark matter arrows indicate ("c/"s).

The upper-most arrows in each case mark the maximum mass configurations.
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The equations of state

F. Oezel and P. Freire Annu. Rev. Astron.  
Astrophys. 54 (2016)401 L. McLerran and S. Reddy  

Phys. Rev. Lett.122 (2019)122701

E. Annala et al. Nat. Phys. (2020)



12/05/2024 Jinniu Hu 8

Nucleon-Nucleon interaction

AV18, CD Bonn, Chiral, SLy4, TM1,……

Nuclear many-body method

ab initio methods, SHF, RMF, RHF, ……

Nuclear structureNuclear reaction

Neutron starCrust Core

Unified framework in nuclear physics

E/A, Esym, K, L ……

<1-2𝛒0<1-3𝛒0

<0.5𝛒0 <5-10𝛒0
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The GW190814-2.6M⨀ object

unequal mass ratio q= �
�0.112 0.009

0.008, with individual source
masses m1= �

�23.2 1.0
1.1 Meand m2= �

�2.59 0.09
0.08 Me, as shown in

Figure 3. A summary of the inferred source properties is given
in Table 1. We assume a standard flat ΛCDM cosmology with
Hubble constant H0=67.9 km s−1 Mpc−1 (Ade et al. 2016).

We report detailed results obtained from the two precessing
BBH signal models including subdominant multipole
moments: Phenom PHM and EOBNR PHM. In order to
compare the template models, we compute their Bayes factor
( �log10 ). We find no significant evidence that one waveform
family is preferred over the other as the Bayes factor between
Phenom PHM and EOBNR PHM is ��log 1.010 . As a result,
we combine the posterior samples with equal weight, in effect
marginalizing over a discrete set of signal models with a
uniform probability. This is shown in the last column of
Table 1, and we refer to these values throughout the paper
unless stated otherwise.

We find that the secondary mass lies in the range of
2.50–2.67Me. This inferred secondary mass exceeds the bounds
of the primary component in GW190425(1.61–2.52Me; Abbott
et al. 2020a) and the most massive known pulsar in the Galaxy:

:�
� M2.14 0.09

0.10 at 68.3% credible interval (Cromartie et al. 2019).
Furthermore, the secondary is more massive than bounds on the
maximum NS mass from studies of the remnant of GW170817,
and from theoretical(Abbott et al. 2018) and observational
estimates(Farr & Chatziioannou 2020). The inferred secondary
mass is comparable to the putative BH remnant mass of
GW170817(Abbott et al. 2019b).

The primary object is identified as a BH based on its measured
mass of �

�23.2 1.0
1.1 Me. Due to accurately observing the frequency

evolution over a long inspiral, the chirp mass is well constrained
to �

�6.09 0.06
0.06 Me. The inferred mass ratio q= �

�0.112 0.009
0.008makes

GW190814only the second gravitational-wave observation with
a significantly unequal mass ratio(Abbott et al. 2019a, 2020d).
Given that this system is in a region of the parameter space

that has not been explored via gravitational-wave emission
previously, we test possible waveform systematics by compar-
ing the Phenom and EOB waveform families. Differences in
the inferred secondary mass are shown in Figure 4. The results
indicate that the inferred secondary mass is robust to possible
waveform systematics, with good agreement between the
Phenom PHM and EOBNR PHM signal models. Signal
models that exclude higher multipoles or precession do not
constrain the secondary mass as well.
The time delay of a signal across a network of gravitational

wave detectors, together with the relative amplitude and phase
at each detector, allows us to measure the location of the GW
source on the sky(Abbott et al. 2020b). We localize
GW190814ʼs source to within 18.5 deg2 at 90% probability,
as shown in Figure 2. This is comparable to the localization of
GW170817(Abbott et al. 2017a, 2019a).
Spins are a fundamental property of BHs. Their magnitude

and orientation carry information regarding the evolution
history of the binary. The effective inspiral spin parameter
χeff (Damour 2001; Racine 2008; Santamaría et al. 2010; Ajith
et al. 2011) contains information about the spin components
that are perpendicular to the orbital plane. We infer that χeff=
� �

�0.002 0.061
0.060. The tight constraints are consistent with being

able to measure the phase evolution from the long inspiral.
Orbital precession occurs when there is a significant spin

component in the orbital plane of the binary(Apostolatos et al.
1994). We parameterize precession by the effective precession
spin parameter 0�χp�1 (Schmidt et al. 2015). This effect
is difficult to measure for face-on and face-off systems
(Apostolatos et al. 1994; Buonanno et al. 2003; Vitale et al.
2014, 2017; Fairhurst et al. 2019a, 2019b). GW190814con-
strains the inclination of the binary to be Θ= �

�0.8 0.2
0.3 rad. Since

the system is neither face-on nor face-off, we are able to put
strong constraints on the precession of the system: χp=

�
�0.04 0.03

0.04. This is both the strongest constraint on the amount of
precession for any gravitational-wave detection to date, and the
first gravitational-wave measurement that conclusively mea-
sures near-zero precession(Abbott et al. 2019a, 2020a, 2020d).
By computing the Bayes factor between a precessing and

nonprecessing signal model ( _�log 0.510 in favor of preces-
sion), we find inconclusive evidence for in-plane spin. This is
consistent with the inferred power from precession S/N ρp
(Fairhurst et al. 2019a, 2019b), whose recovered distribution
resembles that expected in the absence of any precession in the
signal; see Figure 5. The ρp calculation assumes a signal
dominated by the ℓ=2 mode; however, we have verified that
the contribution of higher harmonics to the measurement of
spin precession is subdominant by a factor of 5. The data are
therefore consistent with the signal from a nonprecessing
system.
Figure 4 shows that signal models including spin-precession

effects give tighter constraints on the secondary mass compared
to their nonprecessing equivalents. Signal models that include
spin-precession effects can constrain χp, whereas nonpreces-
sing signal models cannot provide information on in-plane spin

Figure 3. Posterior distribution of the primary and secondary source masses for
two waveform models that include precession and subdominant multipole
moments. The posterior distribution resulting from combining their samples is
also shown. Each contour, as well as the colored horizontal and vertical lines,
shows the 90% credible intervals. The right panel compares m2 to predictions
for the maximum NS mass, Mmax (see Section 6). The posterior distribution for
Mmax from the spectral equation of state analysis of GW170817(Abbott
et al. 2018) is shown in orange, and the empirical Mmax distribution from the
population model of Farr & Chatziioannou (2020) is shown in green. The gray
dashed line and shading represent the measured mass of the heaviest pulsar in
the Galaxy(median and 68% confidence interval; Cromartie et al. 2019). The
solid gray band at 2.3Me is the upper bound on Mmax from studies of
GW170817ʼs merger remnant.
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Density-dependent RMF model

The density dependent coupling constants
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where, ψi represents the wave function of nucleon (proton or neutron). σ, ωµ, &ρµ, and &δ denote the σ, ω, ρ, and δ

mesons, respectively. Wµν and &Rµν are the anti-symmetry tensor fields of ω and ρ mesons. In nuclear matter, the
tensor coupling between the vector meson and nucleon does not provide any contributions. Therefore, it is neglected in
the present Lagrangian. The coupling constants between mesons and nucleon are density-dependent in DDRMF model,
which was firstly proposed by Brockmann and Toki (Brockmann & Toki 1992). It takes into account that the NN
interaction in dense matter is affected by nuclear medium. The density-dependent behaviors of the coupling constants
have many styles. In CDFT, there are two types of density, i. e., the scalar density (ρs) and vector density (ρB).
In principle, the coupling constants in DDRMF can be dependent on scalar density or vector density. In this work,
we focus on the parameterizations of DDRMF depending on the vector density, which only influences the self energy
instead of total energy. Coupling constants of σ and ω mesons are usually expressed as a fraction function of the vector
density. In DD2 (Nikšić et al. 2002), DD-ME1, DD-ME2, DDME-X, DDV, DDVT, and DDVTD parameterizations,
they are given as:

Γi(ρB) = Γi(ρB0)fi(x), with fi(x) = ai
1 + bi(x+ di)2

1 + ci(x+ di)2
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for i = σ, ω. ρB0 is the saturation density of symmetric nuclear matter. Five constraints on the coupling constants
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σ (1) = f
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ω (1) can reduce the numbers of independent parameters to three in Eq. (2). The first
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, 3cid

2
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For the isovector mesons ρ and δ, their coupling constants are,
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While in DD-LZ1 parametrization, the coefficient in front of fraction function, Γi is fixed at ρB = 0 for i = σ, ω:
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There are only four constraint conditions as fi(0) = 1 and f ′′
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constraint f ′′
σ (1) = f ′′

ω(1) is removed in DD-LZ1 parametrization, which can give more precise shell evaluations of finite
nuclei around Z = 58 and 92 (Wei et al. 2020). For ρ meson, its coupling constant is also changed accordingly as

Γρ(ρB) = Γρ(0)exp(−aρx). (6)

To solve the nuclear many-body system in the DDRMF model, the mean-field approximation must be adopted
following the nonlinear RMF models, in which various mesons are treated as classical fields as

σ → 〈σ〉 ≡ σ, ωµ → 〈ωµ〉 ≡ ω, &ρµ → 〈&ρµ〉 ≡ ρ, &δ →
〈

&δ
〉

≡ δ, 〈ψ〉 → ψ. (7)

The space components of vector meson are removed in the parity conservation system. In addition, the spatial
derivatives about nucleon and mesons are neglected in the infinite nuclear matter due to its transformation invariance.
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for 𝛒 and 𝛅 mesons
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We list some of the DDRMF parameterizations in Table I, where the DD2 [77], DD-

ME1 [78], DD-ME2 [79], DD-MEX [80], PKDD [81], TW99 [75], DDV, DDVT, DDVTD [82],

and DD-LZ1 [83] have been applied to study the properties of nuclear matter and the neutron

stars in our previous works [16, 76]. DD-MEX1, DD-MEX2, and DD-MEXY [86] are the

new DDRMF parameter sets based on the DD-MEX set. In DDVT and DDVTD sets, the

tensor coupling between the vector meson and nucleon was included. The scalar-isovector

meson, � was taken into account in DDVTD.

The density-dependent behaviors of the coupling constants as functions of the vector

density are shown in Fig. 1. It can be found that all of these coupling constants decrease

when the nuclear density becomes larger due to the nuclear medium e↵ect. For the ⇢

meson coupling constants in panel (c), all parameter sets have very similar density-dependent

behaviors in the whole density region. In DDVT and DDVTD, the tensor coupling constants

play obvious roles in finite nuclei due to their derivative forms, while they do not provide

any contribution in nuclear matter. Their coupling constants of � and ! mesons in panel

(a) and panel (b) are dramatically smaller than other sets. Furthermore, the coupling

constants from several typical nonlinear RMF models, NL3 [87], TM1 [31], IUFSU [88], and

BigApple [89] are also shown to compare their di↵erences with those in DDRMF model.

At low density region, the coupling constants in DDRMF models are usually stronger than

those in nonlinear RMF modes, while weaker at higher density.

FIG. 1: The coupling constants of !, �, and ⇢ mesons as functions of vector density in various

DDRMF models and several nonlinear RMF models.

The saturation properties of symmetric nuclear matter calculated with di↵erent DDRMF

e↵ective interactions are listed in Table II, i.e. the saturation density, ⇢0, the binding energy

per nucleon, E/A, incompressibility, K0, symmetry energy, Esym, the slope of symmetry

12
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Density-dependent RMF model
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FIG. 1. The differences Eth − Eexp between calculated (Eth) and experimental (Eexp) masses for indicated CEDFs. All 855 even-even nuclei
for which measured and estimated masses are available in the AME2016 compilation [20] are used in this comparison. If Eth − Eexp < 0, the
nucleus is more bound in the calculations than in experiment.

the optimization of the NL5(Y) CEDF. Note that the Pair 1 and
Pair 2 separable pairings are used in the fitting protocols of the
NL5(E) and NL5(Y) CEDFs, respectively. Table I shows that
the application of the anchor based optimization method in
combination with the use of isospin dependent neutron pairing
leads to a substantial improvement of global mass description
and some improvement of the symmetry energy J and the
slope of the symmetry energy L0. The same situation exists
also for the PC functionals. The anchor based optimization
starting from the PC-PK1 functional leads to the CEDF PC-
Y, which provides a substantial improvement of the global
description of binding energies (see Table I).

Note that the fitting protocols of the above-mentioned
DDME and NLME functionals include only 12 spherical
anchor nuclei. For these functionals it was verified that the
increase of the number of spherical anchor nuclei to 60 (as in
the fitting protocol of the PC-PK1 functional [23]) does not
lead to an improvement of the global description of binding
energies. The same conclusion is valid for the PC model: the
reduction of the number of the anchor spherical nuclei from
60 in the PC-Y functional down to 12 in the PC-Y1 functional
(see Table 1 in the Supplemental Material [19]) leads to some

improvement in the description of physical observables (see
Table I).

With the exception of the DD-MEX2 functional all CEDFs
shown in Table I give comparable rms deviations for charge
radii !(rch)rms ≈ 0.026 fm, corresponding to a high precision
of ≈0.5% in charge radii predictions. These results and the
analysis of Ref. [27] suggest that the inclusion of global data
on charge radii will not likely lead to an appreciable improve-
ment of the functionals.

Figure 1 illustrates the improvements in the global descrip-
tion of the masses and related physical observables when the
anchor-based optimization method is employed. DD-MEX is
the best DDME functional as defined by the penalty function
of the fitting protocol including only spherical nuclei (see
Ref. [18]). However, this bias towards spherical nuclei leads to
!Erms = 2.849 MeV in the global description of the masses
(see Table I) and appreciable deviations between theory and
experiment displayed in Figs. 1(a) and 1(c). In particular,
it leads to a systematic shift of the average Eth − Eexp val-
ues from the Eth − Eexp = 0 line [see Fig. 1(a)]. In contrast,
such a shift does not appear for the DD-MEY functional
[see Fig. 1(a)] which, in addition, improves the description

L041301-4

ANCHOR-BASED OPTIMIZATION OF ENERGY DENSITY … PHYSICAL REVIEW C 107, L041301 (2023)

TABLE I. The rms deviations !Erms, !(S2n)rms, !(S2p)rms, and !(rch )rms between calculated and experimental binding energies E , two-
neutron (two-proton) separation energies S2n (S2p), and charge radii rch. The first three observables are determined with respect to a “measured
+ estimated” set of experimental masses of 855 even-even nuclei from the AME2016 mass evaluation [20]. The !(rch)rms values are calculated
using experimental data on charge radii of 305 even-even nuclei from Ref. [21]. The values shown in parentheses are the rms deviations for the
subset of nuclei which excludes light nuclei with A < 70. The incompressibility K0, the symmetry energy J , and the slope L0 of the symmetry
energy of the functionals under study are shown in columns 6, 7, and 8, respectively.

!Erms !(S2n)rms !(S2p)rms !(rch)rms K0 J L0

(MeV) (MeV) (MeV) (fm) (MeV) (MeV) (MeV)
1 2 3 4 5 6 7 8

DD-ME2 [22] 2.436 (2.300) 1.056 (0.854) 0.949 (0.750) 0.0266 (0.0262) 250.9 32.9 49.4
DD-MEX [18] 2.849 (2.963) 1.095 (0.972) 0.978 (0.847) 0.0247 (0.0249) 267.0 32.9 47.8
DD-MEX1 1.637 (1.539) 1.045 (0.873) 0.896 (0.704) 0.0261 (0.0263) 291.8 32.5 51.8
DD-MEX2 2.236 (1.791) 1.228 (0.913) 1.271 (0.928) 0.0466 (0.0488) 255.8 35.9 85.3
DD-MEY 1.734 (1.414) 1.259 (0.876) 1.026 (0.755) 0.0264 (0.0244) 265.8 32.8 51.8
NL5(E) [10] 2.802 (2.689) 1.204 (0.864) 1.366 (1.033) 0.0285 (0.0271) 253.0 38.9 125.0
NL5(Y) 2.362 (1.675) 1.256 (0.709) 1.222 (0.772) 0.0297 (0.0292) 254.5 36.6 116.7
PC-PK1 [23] 2.400 (2.149) 1.331 (0.932) 1.354 (0.875) 0.0306 (0.0269) 238 35.6 113
PC-Y 1.951 (1.600) 1.438 (0.770) 1.175 (0.690) 0.0311 (0.0247) 241 35.1 105
PC-Y1 1.849 (1.509) 1.345 (0.846) 1.106 (0.822) 0.0294 (0.0249) 240 34.9 107

in the description of two-neutron and two-proton separation
energies and charge radii. Most of the NMPs of this functional
are within the SET2b limits: the only exception is incompress-
ibility K0 which exceeds the SET2b upper limit.

It is interesting to see whether the binding energies and
charge radii alone can provide a reasonable constraint on
NMPs and neutron skins. For that, the DD-MEX2 and DD-
MEY functionals have been created, the fitting protocols of
which do not contain any information on NMPs and neutron
skins (see Table 4 in the Supplemental Material [19]). In
addition, the adopted errors for binding energies are fixed
at 1.0 MeV for all nuclei in this class of functionals. The
DD-MEX2 functional has been optimized with the Pair 1
separable pairing. As compared with DD-ME2 (DD-MEX1)
it leads to some improvement (degradation) in the description
of binding energies but provides less accurate description of
two-proton and two-neutron separation energies and charge
radii as compared with the two above-mentioned functionals
(see Table I).

The situation drastically improves when the Pair 2 sepa-
rable pairing is used. This leads to the DD-MEY functional,
which provides the second best global description of binding
energies (!Erms = 1.734 MeV) and the best description of the
binding energies of the A > 70 nuclei (!Erms = 1.414 MeV)
among considered functionals (see Table I) Despite the fact
that the DD-MEY functional was fitted without constraint on
NMPs, they are within the SET2b limits (see Table I). In par-
ticular, it gives a more reasonable value of incompressibility
K0 than the DD-MEX1 functional. These facts potentially in-
dicate the importance of the isospin dependent neutron pairing
in the simultaneous description of binding energies and NMP.
However, the description of two-neutron and two-proton sep-
aration energies with this functional is somewhat worse than
in the DD-MEX1 one.

To verify the results obtained with anchor based
optimization method we also employed the method of
minimization of Ref. [26], which is used in nuclear mass
table fits by the Brussels group. In this method, the binding

energies of deformed and transitional nuclei are corrected by
the deformation energies so the optimization is carried out
for the energies of spherical solution of the nuclei used in the
fitting protocol. In a given nucleus, the deformation energy
represents the difference between the energy of the global
minimum with deformations βi != 0 (i = 2, 4, . . . ) and that
of the spherical solution with βi = 0. Because of available
computers we used 400 even-even nuclei evenly spread over
nuclear chart (starting from actinides and going down to light
nuclei and eliminating each second even-even nucleus) in
these calculations. The iterative procedure in this method
requires new calculations of deformation energies at each
iteration (see Ref. [26] for details) and it turns out that their
convergence is quite slow, especially in the DD-MEX1 type
of the functional. The rms deviations between experimental
and calculated binding energies !Erms obtained in these
calculations are 1.672(0.068)4 and 1.613(0.258) MeV for the
DD-MEY and DD-MEX1 functionals, respectively. Thus,
the results obtained with this approach are in line with those
obtained in anchor based optimization approach (see Table I);
some difference in the results are due to different selection of
the nuclei directly included in the fitting protocol. Note that
this approach is numerically substantially more time consum-
ing as compared with the anchor based optimization approach
because (i) substantially more “spherical” nuclei (400 versus
12) are used in the minimization procedure and (ii) there is
slow convergence of deformation energies in the iterative
procedure.

The anchor-based optimization method has been applied
also to the NLME and PC classes of the CEDFs. In both cases,
it leads to an improvement of global description of masses.
The NL5(E) functional (see Ref. [10]) is the starting point for

4The numbers shown in parentheses are the errors in deformation
energies due to limited number of iterations in the iterative proce-
dure.

L041301-3
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EOSs of nuclear matter below 0.2 fm�3 are almost identical since all the parameters were

determined by properties of finite nuclei, whose central density is around nuclear saturation

density ⇢B0 ⇠ 0.15 fm�3. Their di↵erences increase from 0.30 fm�3 and they are separated

into the soft group with DDV, DDVT, and DDVTD, and the sti↵er group with TW99, DD2,

DD-ME1, DD-ME2, DD-MEX, DD-MEX1, DD-MEX2, DD-MEXY and DD-LZ1 since the

scalar and vector coupling strengths in softer group sets are obviously weaker than those in

sti↵er group sets [16].

In panel (b) of Fig. 2, the pressures in nuclear matter as functions of density are shown

and compared to the constraints from heavy-ion collisions at 2 � 4⇢B0 by Danielewicz et

al. [92]. We can find that the EOSs from the softer group sets are completely consistent

with the experiment data, while the other group is indeed sti↵er than the heavy-ion collisions

constraints. However, we want to emphasize here that the constraints from the heavy-ion

collisions are strongly model-dependent, which is determined by many inputs, such as the

NN interaction. To our knowledge, there were few investigations about heavy-ion collisions,

which adopted the RMF model as NN interaction. Therefore, it cannot certainly claim that

the EOSs generated by DD2, DD-ME1, DD-ME2, DD-MEX, DD-MEX1, DD-MEX2, DD-

MEXY and DD-LZ1 parameterizations are clearly excluded by the constraints of heavy-ion

collisions.

FIG. 2: The binding energies per nucleon the pressures as functions of vector density for symmetric

nuclear matter with various DDRMF models.

For the hyperonic star matter with strangeness degree of freedom, the hyperon masses are

chosen as m⇤ = 1115.68 MeV, m⌃+ = 1189.37 MeV, m⌃0 = 1192.64 MeV, m⌃� = 1197.45

MeV, m⌅0 = 1314.86 MeV, and m⌅� = 1321.71 MeV [93], while the masses of strange

14

TABLE III: The Coupling constants between hyperons and � meson, ��Y and ⇤-�⇤, ��⇤⇤ in

di↵erent DDRMF e↵ective interactions.

R�⇤ R�⌃ R�⌅ R�⇤⇤

DD-LZ1 0.610426 0.465708 0.302801 0.87595

DD-MEX 0.612811 0.469159 0.304011 0.86230

DD-ME2 0.609941 0.460706 0.302483 0.85758

DD-ME1 0.608602 0.457163 0.301777 0.85828

DD2 0.612743 0.466628 0.303937 0.86420

PKDD 0.610412 0.461807 0.302729 0.84965

TW99 0.612049 0.468796 0.303632 0.85818

DDV 0.607355 0.452777 0.301101 0.87979

DDVT 0.591179 0.399269 0.292391 0.92256

DDVTD 0.591108 0.399023 0.292352 0.92246

B. Neutron Star from DDRMF model

FIG. 3: The pressure P versus energy density " in panel (a) and the pressure P versus baryon

density ⇢B in panel (b) of neutron star matter from DDRMF models. The joint constraints in

panel (a) are from GW170817 and GW190814. The corresponding speeds of sound in units of the

speed of light shown in subfigure of panel (b).

Together with the conditions of beta equilibrium and charge neutrality in Eq. (18) and

Eq. (20), the EOSs of neutron star matter with DDRMF models can be obtained in Fig. 3,

which shows the pressures of neutron star matter as a function of energy density in panel

(a) and the pressures as functions of density in panel (b). The crust EOS of the non-uniform

16
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The mass, radius, deformability relations
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Figure 8. The tidal deformabilities from various DDRMF models as functions of neutron star mass. The mass regions of massive
neutron stars are also plotted.

Table 3. Neutron star properties from various DDRMF models.

DD-LZ1 DD2 DD-ME1 DD-ME2 DD-MEX DDV DDVT DDVTD

Mmax/M! 2.5545 2.4168 2.4426 2.4829 2.5566 1.9317 1.9251 1.8507

Rmax[km] 12.178 11.826 11.885 12.012 12.274 10.336 10.023 9.850

ρmax[fm
−3] 0.786 0.845 0.832 0.813 0.777 1.188 1.237 1.306

R1.4[km] 12.864 12.938 12.931 12.961 13.118 12.195 11.511 11.396

Λ1.4 727.071 639.032 686.786 730.737 790.051 390.005 301.388 274.908

4. SUMMARIES AND PERSPECTIVES

The latest density-dependent relativistic mean-field (DDRMF) parameterizations were systematically applied to
investigate the properties of neutron star, i. e., DD2, DD-ME1, DD-ME2, DD-MEX, DD-LZ1, DDV, DDVT, and
DDVTD sets. All of them were determined by fitting properties of spherical finite nuclei and have the same density-
dependent function forms for meson coupling constants. Their densities, binding energies, incompressibilities, and
symmetry energies at saturation points of symmetric nuclear matter are almost identical.
The equations of state (EOSs) of symmetric nuclear matter and pure neutron matter from present sets were separated

into the softer type and stiffer one at high density region. The softer EOSs are generated by the DDV, DDVT, and
DDVTD, whose coupling strengths of σ and ω mesons are weaker comparing to other sets. Their vector and scalar
potentials have comparable magnitudes, while the vector potentials are much larger than the scalar ones in stiffer
EOSs given by DD2, DD-ME1, DD-ME2, DD-MEX, and DD-LZ1. Their pressures in symmetric nuclear matter at
2 ∼ 4ρB0 were a little bit higher than the present constraints from heavy-ion collisions, while the softer EOSs satisfied
these constraints.
The TOV equation was solved using the EOSs of neutron star matter, where the nucleons and leptons are in

conditions of beta equilibrium and charge neutrality, generated by present DDRMF models. The softer EOSs from
DDV, DDVT, and DDVTD only can support the neutron stars with maximum masses around 1.90 M! at 10 km and
tidal deformabilities at 1.4 M!, Λ1.4 = 274− 390. The stiffer EOSs can generate very massive neutron stars around
2.5 M!. In particular, the DD-MEX and DD-LZ1 parameter sets even can produce neutron stars with masses of
2.55 M!, which can explain the secondary object in GW190814 with a mass of 2.50 − 2.67 M!. Furthermore, their
radii at 1.4 M! are also consistent with the constraints from NICER including the mass and radius simultaneous
measurement, although their Λ1.4 were around 639− 790.
In this investigation, we found that several parameterizations in DDRMF can provide very massive neutron stars due

to the strong repulsive contributions from vector mesons at high density, which can describe ground state properties
of finite nuclei exactly at the same time. The stiffer EOSs may slightly exceed the constraints of EOS from heavy-
ion collisions and tidal deformability from GW170817. However, due to the strong model dependence of these two
constraints and their large uncertainties, we can not exclude the possibility of the secondary object of GW190814 as
a neutron star consisting of nucleons and leptons. We have shown that the stiffer EOSs give the dimensionless tidal

matter is generated by TM1 parameterization with Thomas-Fermi approximation [22]. In

the core of neutron star, EOSs of the uniform matter are calculated with various DDRMF

sets discussed above. Their density-dependent behaviors are very similar with those in

symmetric nuclear matter. At high density region, the sti↵er group sets provide higher

pressures due to the stronger vector potentials. The joint constraints on EOS extracted

from the GW170817 and GW190814 are shown as a shaded band here. When the energy

density is smaller than 600 MeV/fm3, the EOSs from sti↵er group sets satisfy the constraints

from the gravitational wave detection, while the pressures obtained from softer group sets

start to be lower than the constraint band from " = 300 MeV/fm3. The speeds of sound

in neutron star matter, cs from softer group sets in the insert of panel (b) are around 0.6

at ⇢B = 1.0 fm�3. They are much lower than those from sti↵er group EOSs, which rapidly

increase from ⇢B = 0.2 fm�3 and can reach around 0.8 at high density.

FIG. 4: (a) Mass-radius relations of neutron stars obtained using the EOSs from di↵erent DDRMF

sets. The dotted contours show the 68.3% and 95.4% credibility mass-radius constraints from PSR

J0740+6620 [5] and PSR J0030+0451 [6]. The solid contours represent the central compact objects

within HESS J1731-347 [17]. The horizontal error bar at 1.4M� is from GW170817 [10]. (b) The

tidal deformabilities as functions of neutron star mass. The horizontal error bar represents the

tidal deformability constraint with a range of 70 < ⇤1.4 < 580 from GW170817.

The mass-radius (M�R) relation of a static neutron star can be obtained by solving TOV

equation in Eq. (21) with the EOS of neutron star matter as input. The M � R relations

from various DDRMF models are shown in panel (a) of Fig 4. The M � R relations from

BSk series [90, 91] are also shown for comparison. Additionally, we include mass-radius

observations from measurements of PSR J0740+6620 and PSR J0030+0451 by NICER,

17
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Strangeness degree of freedom
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Fig. 15. (left) Three-dimensional nuclear chart. Experimentally observed hypernuclei are plotted together with ordinary nuclei
that do not have strangeness. (right) Mass spectrum of a 89

Λ Y hypernucleus excited via a 89Y (π+, K+) reaction, exhibiting single
particle orbits of a Λ hyperon. From [48].

extended to the physics of hadron many-body sys-
tems with u, d, and s quarks. This is termed as
“strangeness nuclear physics.” Figure 15 (left) shows
the 3-dimensional nuclear chart in which the num-
ber of strangeness is taken as the third axis and var-
ious experimentally observed hypernuclei — nuclei
that contain hyperon(s) as constituents — are plot-
ted together with ordinary nuclei that do not have
strangeness. These hypernuclei have been produced
mostly with K− and π± beams, because K− and
π± around 1–2GeV/c momenta can produce Λ, Σ,
and Ξ hyperons with relatively large cross sections.
Λ hypernuclei have been investigated in the miss-
ing mass spectroscopy via (K−, π) and (π+, K+)
reactions, giving the excitation spectra as shown in
Fig. 15 (right). Such spectroscopic data for Λ hyper-
nuclear structures have clarified Λ’s nuclear poten-
tial depth and the spin-dependent components of
the ΛN interaction [44]. In the case of Σ hyper-
ons, the spin–isospin averaged Σ’s nuclear potential
was found to be strongly repulsive [45], suggesting
that bound Σ hypernuclei do not exist except for the
4
ΣHe bound state. As for double strangeness systems,
an unambiguous ΛΛ hypernuclear event observed
in an emulsion-counter hybrid experiment via the
(K−, K+) reaction indicated that the ΛΛ interac-
tion is weakly attractive [46]. Recently, an emulsion
event that indicated a deeply bound Ξ− nuclear sys-
tem was observed, confirming that the ΞN interac-
tion is attractive [47]. Because the K−(K̄)-nucleon
interaction is known to be attractive, researchers

are also searching for possible K̄-nuclear bound
states.

Experimental information on baryon–baryon
interactions can be compared with theoretical inter-
action models, as well as with lattice-QCD sim-
ulations, and will help us understand the nuclear
force based on QCD. Additionally, knowledge of
hyperon–nucleon, hyperon–hyperon, and antikaon–
nucleon interactions are necessary for uncovering the
high-density hadronic matter in neutron stars, in
which hyperons and/or anti-kaons are expected to
appear.

Kaon and pion beams at varying energies are
also important tools for understanding the whole
spectrum of hadrons and their structure. Experi-
mental quests for missing resonances (predicted but
unobserved hadrons) and exotic hadrons (hadrons
with non-standard structure such as tetraquarks,
pentaquarks, dibaryons, glueballs, and hybrids) have
been attempted with kaon and pion beams together
with photon (electron) beams. Their production
cross sections with hadron beams, including angu-
lar distribution and energy dependence, provide
clues for understanding the structure of the hadrons
that are produced. Further, vector mesons (ρ, ω,
φ) produced by a high energy proton beam on
a nucleus can be used as a probe for investi-
gating the possible effects of hadron mass shift
in nuclear medium caused by partial restoration
of chiral symmetry, as the KEK-E325 experiment
suggested [49].
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The coupling strengths

The interaction between vector mesons and baryons

TABLE III. Nuclear matter properties at saturation density generated by NLRMF and DDRMF

parameterizations.

⇢B0[fm�3] E/A[MeV] K0[MeV] Esym[MeV] L0[MeV] M⇤
n/M M⇤

p /M

NL3 0.1480 -16.2403 269.9605 37.3449 118.3225 0.5956 0.5956

BigApple 0.1545 -16.3436 226.2862 31.3039 39.7407 0.6103 0.6103

TM1 0.1450 -16.2631 279.5858 36.8357 110.6082 0.6348 0.6348

IUFSU 0.1545 -16.3973 230.7491 31.2851 47.1651 0.6095 0.6095

DD-LZ1 0.1581 -16.0598 231.1030 31.3806 42.4660 0.5581 0.5581

DD-MEX 0.1519 -16.0973 267.3819 32.2238 46.6998 0.5554 0.5554

DD-ME2 0.1520 -16.1418 251.3062 32.3094 51.2653 0.5718 0.5718

DD-ME1 0.1522 -16.2328 245.6657 33.0899 55.4634 0.5776 0.5776

DD2 0.1491 -16.6679 242.8509 31.6504 54.9529 0.5627 0.5614

PKDD 0.1495 -16.9145 261.7912 36.7605 90.1204 0.5713 0.5699

TW99 0.1530 -16.2472 240.2022 32.7651 55.3095 0.5549 0.5549

DDV 0.1511 -16.9279 239.9522 33.5969 69.6813 0.5869 0.5852

DDVT 0.1536 -16.9155 239.9989 31.5585 42.3414 0.6670 0.6657

DDVTD 0.1536 -16.9165 239.9137 31.8168 42.5829 0.6673 0.6660

the SU(6) symmetry for the coupling constants between hyperons and vector mesons [133],

�!⇤ = �!⌃ = 2�!⌅ =
2

3
�!N ,

2��⌃ = ��⌅ = �2
p
2

3
�!N , ��N = 0,

�⇢⇤ = 0, �⇢⌃ = 2�⇢⌅ = 2�⇢N ,

��⇤ = 0, ��⌃ = 2��⌅ = 2��N .

(32)

The coupling constants of hyperon and scalar mesons are constrained by the hyperon-nucleon

potentials in symmetric nuclear matter, UN
Y , which are defined by

UN
Y (⇢B0) = �R�Y ��N(⇢B0)�0 +R!Y �!N(⇢B0)!0, (33)

where ��N(⇢B0), �!N(⇢B0), �0, !0 are the values of coupling strengths and �, ! meson

fields at the saturation density. R�Y and R!Y are defined as R�Y = ��Y /��N and R!Y =

�!Y /�!N . We choose the hyperon-nucleon potentials of ⇤, ⌃ and ⌅ as UN
⇤ = �30 MeV,

UN
⌃ = +30 MeV and UN

⌅ = �14 MeV, respectively from the recent hypernuclei experimental

observables [72, 80, 134].
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The hyperon-hyperon potentials

The coupling constants between ⇤ and �⇤ is generated by the value of the ⇤⇤ potential

in pure ⇤ matter, U⇤
⇤ at nuclear saturation density, which is given as

U⇤
⇤ (⇢B0) =�R�⇤��N(⇢B0)�0 �R�⇤⇤��N(⇢B0)�

⇤
0

+R!Y �!N(⇢B0)!0 +R�⇤�!N(⇢B0)�0,
(34)

We similarly define that R�⇤⇤ = ��⇤⇤/��N and R�⇤ = ��⇤/�!N . R�⇤⇤ is obtained from

the ⇤ � ⇤ potential as U⇤
⇤ (⇢B0) = �10 MeV, which was extracted from the ⇤ bonding

energies of double-⇤ hypernuclei. R�⇤ = �
p
2/2 is corresponding to the SU(6) symmetry

broken case [80]. Here, the coupling between the ⌃, ⌅ hyperons and �⇤ mesons are set as

R�⇤⌅ = 0, R�⇤⌃ = 0, since the information about their interaction is absent until now. The

values of R�Y and R�⇤⇤ with above constraints in di↵erent RMF e↵ective interactions are

shown in Table IV.

TABLE IV. The Coupling constants between hyperons and � meson, g�Y and ⇤-�⇤, g�⇤⇤ in di↵erent

RMF e↵ective interactions.

R�⇤ R�⌃ R�⌅ R�⇤⇤

NL3 0.618896 0.460889 0.306814 0.84695

BigApple 0.616322 0.452837 0.305436 0.86313

TM1 0.621052 0.445880 0.307606 0.83710

IUFSU 0.616218 0.453006 0.305389 0.88802

DD-LZ1 0.610426 0.465708 0.302801 0.87595

DD-MEX 0.612811 0.469159 0.304011 0.86230

DD-ME2 0.609941 0.460706 0.302483 0.85758

DD-ME1 0.608602 0.457163 0.301777 0.85828

DD2 0.612743 0.466628 0.303937 0.86420

PKDD 0.610412 0.461807 0.302729 0.84965

TW99 0.612049 0.468796 0.303632 0.85818

DDV 0.607355 0.452777 0.301101 0.87979

DDVT 0.591179 0.399269 0.292391 0.92256

DDVTD 0.591108 0.399023 0.292352 0.92246

16

The coupling constants between ⇤ and �⇤ is generated by the value of the ⇤⇤ potential

in pure ⇤ matter, U⇤
⇤ at nuclear saturation density, which is given as

U⇤
⇤ (⇢B0) =�R�⇤��N(⇢B0)�0 �R�⇤⇤��N(⇢B0)�

⇤
0

+R!Y �!N(⇢B0)!0 +R�⇤�!N(⇢B0)�0,
(34)

We similarly define that R�⇤⇤ = ��⇤⇤/��N and R�⇤ = ��⇤/�!N . R�⇤⇤ is obtained from

the ⇤ � ⇤ potential as U⇤
⇤ (⇢B0) = �10 MeV, which was extracted from the ⇤ bonding

energies of double-⇤ hypernuclei. R�⇤ = �
p
2/2 is corresponding to the SU(6) symmetry

broken case [80]. Here, the coupling between the ⌃, ⌅ hyperons and �⇤ mesons are set as

R�⇤⌅ = 0, R�⇤⌃ = 0, since the information about their interaction is absent until now. The

values of R�Y and R�⇤⇤ with above constraints in di↵erent RMF e↵ective interactions are

shown in Table IV.

TABLE IV. The Coupling constants between hyperons and � meson, g�Y and ⇤-�⇤, g�⇤⇤ in di↵erent

RMF e↵ective interactions.

R�⇤ R�⌃ R�⌅ R�⇤⇤

NL3 0.618896 0.460889 0.306814 0.84695

BigApple 0.616322 0.452837 0.305436 0.86313

TM1 0.621052 0.445880 0.307606 0.83710

IUFSU 0.616218 0.453006 0.305389 0.88802

DD-LZ1 0.610426 0.465708 0.302801 0.87595

DD-MEX 0.612811 0.469159 0.304011 0.86230

DD-ME2 0.609941 0.460706 0.302483 0.85758

DD-ME1 0.608602 0.457163 0.301777 0.85828

DD2 0.612743 0.466628 0.303937 0.86420

PKDD 0.610412 0.461807 0.302729 0.84965

TW99 0.612049 0.468796 0.303632 0.85818

DDV 0.607355 0.452777 0.301101 0.87979

DDVT 0.591179 0.399269 0.292391 0.92256

DDVTD 0.591108 0.399023 0.292352 0.92246

16



12/05/2024 Jinniu Hu 19

The hyperonic star

The radius-mass relation of neutron star and hyperonic star
K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Nucl. Phys. Rev. 39(2022)35

FIG. 8: (a) Mass-radius relations of neutron stars obtained using the EOSs from di↵erent DDRMF

sets. The dotted contours show the 68.3% and 95.4% credibility mass-radius constraints from PSR

J0740+6620 [5] and PSR J0030+0451 [6]. The solid contours represent the central compact objects

within HESS J1731-347 [17]. The horizontal error bar at 1.4M� is from GW170817 [10]. (b) The

tidal deformabilities as functions of neutron star mass. The horizontal error bar represents the

tidal deformability constraint with a range of 70 < ⇤1.4 < 580 from GW170817.

The M � R and the M � ⇤ relations of hyperonic star from DDRMF parameter sets

are shown in panel (a) of Fig. (8). The onset positions of the first hyperon in the relations

are shown as the discretized symbols. After considering the strangeness degree of freedom,

the maximum masses of the hyperonic star will reduce about 15% ⇠ 20%. Among these

parameter sets, the DD-LZ1, DD-MEX, DD-ME2, DD-ME1, DD2, and PKDD sets generate

the hyperonic star heavier than 2M�. Furthermore, the central densities of the hyperonic

star become higher compared to the neutron star, all of which are above 5⇢0. The role of

hyperons in the lower mass hyperonic star is strongly dependent on the threshold density of

the first onset hyperon. The properties of a hyperonic star whose central density is below this

threshold are identical to those of a neutron star. When the central density of the hyperonic

star is larger than the threshold, the properties of hyperonic star will be influenced. For

the softer EOSs, the lower mass neutron stars are more easily a↵ected, because their central

densities are much larger than those generated by the harder EOSs at the same neutron

star mass. For example, the radii of the hyperonic stars at 1.4M� from DDV, DDVT, and

DDVTD decrease about 5% compared to those of the neutron stars.

The dimensionless tidal deformabilities of hyperonic star are plotted in panel (b) of

Fig. (8). For the harder EOSs, the hyperons only can influence the magnitudes of ⇤ at

22
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The hyperonic star

The equations of state for hyperonic star
K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Nucl. Phys. Rev. 39(2022)35

of the neutron stars, i.e. maximum mass (Mmax), the corresponding radius (Rmax), the

central density (⇢c), the radius (R1.4), and the dimensionless tidal deformability (⇤1.4) at

1.4M�, as well as the radius (R0.77) and the corresponding density at 0.77M�, can be seen

in Ref. [20].

C. Hyperonic Star from DDRMF Model

FIG. 7: The pressure P versus energy density " in panel (a) and the pressure P versus baryon

density ⇢B in panel (b) of neutron star matter from DDRMF models. The joint constraints in

panel (a) are from GW170817 and GW190814. The corresponding speeds of sound in units of the

speed of light shown in subfigure of panel(b).

Similarly, EOSs from DDRMF models for the hyperonic star matter are obtained in the

panel (a) and panel (b) of Fig. (7). The EOS of the inner crust is also chosen from the

TM1 parameterization with self-consistent Thomas-Fermi approximation as before [97] and

the EOSs of the core region are calculated with various DDRMF parameter sets. They

almost become softer from " ⇠ 300 MeV/fm3 compared to the neutron star matter in Fig.

(3) due to the appearances of hyperons. In high-density region, all of them are below the

joint constraints on the EOS from GW170817 and GW190814 events. The onset densities

of the first hyperon are marked by the full discretized symbols, which are around 0.28�0.45

fm�3. c2s of hyperonic star matter in panel (b) of Fig. (7) is not smooth anymore since

the appearance of hyperon can sharply reduce the magnitude of c2s, especially at first onset

density. For the hard EoS, the c2s becomes 0.6 in hyperonic star matter from 0.8 in neutron

star matter at high-density region.
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The correlations between R𝛚 and R𝛔

The correlations between the coupling strengths
RONG, TU, AND ZHOU PHYSICAL REVIEW C 104, 054321 (2021)

FIG. 3. The correlation between Rσ and Rω in DD-ME2-Yi and
PKDD-Yi (i = 1, 2, and 3). The blue line shows the linear relation
(10) obtained by a linear fitting of Rσ and Rω in these six parameter
sets. Predictions from the quark model (QM), NL effective inter-
actions NLSH-B [72], PK1-Y1 [121], and TM1-A [120] and DD
effective interactions DDME2D-a [57] and DDME2-a [57] are also
shown for comparison.

Generally speaking, the potential depths, represented by
UB(0) ≡ UB(r)|r=0, are about 70 MeV for nucleons and 30
MeV for #. The scalar potential depth gσNσ (0) for nucleons
is about −400 MeV. With these values, Eq. (11) becomes
Rω ≈ 1.212Rσ − 0.091, which is very close to Eq. (10). Simi-
lar linear behaviors between Rσ and Rω in nonlinear parameter
sets have been discussed in Refs. [51,121]. Several NL-RMF
effective interactions NLSH-B [72], PK1-Y1 [121], and TM1-
A [120] and DD-RMF effective interactions DDME2D-a [57]
and DDME2-a [57] are also shown in Fig. 3. They all fall
well on the line defined in Eq. (10). The ratios Rσ = Rω = 2/3
predicted from the quark model deviate from the blue line only
slightly, as seen in Fig. 3. However, the # separation energies
calculated with the corresponding parameter sets (DD-ME2-
Y0 and PKDD-Y0) are much larger than the experimental
values as listed in Table I. This means that these two ratios
are connected strongly and correlate closely through the linear
relation (10).

Next we analyze the errors of the parameters associated
with the least-squares fitting by using the well-known strategy
for error estimates from statistical analysis [132,133]. For
each effective interaction, a physically reasonable parameter
space is defined by a confidence region around Rσ and Rω

after normalization and the boundary of this space determines
the errors of the parameters. Since the # separation energy
is a highly nonlinear function of the parameters, the obtained
confidence region is asymmetric with respect to Rσ and Rω.
Given a certain value of Rσ , the error of Rω is quite small
(less than 0.001) due to the strong correlation between the two
ratios [cf. Eq. (10)]. Therefore, we only evaluate the errors σ+

Rσ

and σ−
Rσ

of the independent parameter Rσ for each effective
interaction. As seen in Table I, σ+

Rσ
and σ−

Rσ
are smaller than

0.1 for all new effective interactions proposed in this work.
# separation energies in single-# excited states are not

included in our fitting procedure. Next we calculate # sepa-
ration energies in deformed single-# levels and average those
from the same orbit with a fixed orbital angular momentum

l to obtain single-# separation energies in the p#, d#, f#,
and g# orbits. In Fig. 4, results calculated with DD-ME2-
Y2 and PKDD-Y2 are compared with experimental values
taken from Refs. [7,126]. It can be seen that # separation
energies in the p#, d#, f#, and g# single-particle states can
be reproduced satisfactorily. For heavy hypernuclei 208

# Pb and
139
# La, the theoretical # separation energies in the g# state
calculated with PKDD-Y2 match the experimental values well
but those calculated with DD-ME2-Y2 are a little smaller than
the experimental values. For light hypernucleus 12

# C, although
it is weakly bound in the p# state from both (π+, K+) and
emulsion experiments, # is unbound from the new effective
interactions DD-ME2-Y2 and PKDD-Y2.

These new effective interactions are obtained by adjust-
ments to properties of hypernuclei. The question then arises
as to how well the neutron-star properties can be described by
them. The equations of state (EoSs) and mass-radius (M-R)
relations of neutron stars are calculated with DD-ME2-Yi
(i = 1, 2, and 3) and shown in Fig. 5. The octet baryons
p, n, #, %±, %0, &0, and &− and the leptons e− and
µ− are considered. The vector coupling constants are deter-
mined by the naive quark model, i.e., 2gω& = gω% = 2gωN/3
for ωY coupling constants and gρ% = 2gρ& = 2gρN for ρY
couplings. The scalar coupling constants gσ% and gσ& are
constrained by the empirical potentials U (N )

% = 30 MeV and
U (N )

& = −15 MeV [134], respectively. The EoSs calculated
with DD-ME2-Yi (i = 1, 2, and 3) are the same as that with
DD-ME2 at low energy density where only nucleons exist.
When the energy density is larger than a certain value (about
300 MeV fm−3), hyperons appear and the EoS is softer than
that without hyperons, leading to the so-called “hyperon puz-
zle” [135,136]: Hyperons soften the EoS so that the maximum
mass of neutron stars is smaller than 2M$, which is the lower
limit of the maximum neutron-star mass as constrained from
the astrophysical observations [137,138]. It can be seen in
Fig. 5 that the larger the Rσ , the stiffer the EoS and the
larger the maximum mass of neutron stars. With DD-ME2-
Y1, DD-ME2-Y2, and DD-ME2-Y3, the maximum masses
of neutron stars are, respectively, about 1.4M$, 1.5M$, and
1.8M$, which are all smaller than 2.5M$ with DD-ME2. The
maximum mass calculated with the upper boundary of Rσ

in DD-ME2-Y3 is 1.9M$ which is still smaller than 2M$.
One way to stiffen the EoS and thus increase the maximum
mass of hyperon stars is to introduce an additional repulsion
from the exchange of φ mesons in the RMF framework [139].
A systematic study of φ-meson effects on the properties of
hyperon stars in the DD-RMF model has been carried out, and
it was found that the 2M$ limit for the maximum mass can be
reached by using several relativistic density functionals with
the φ meson included [140].

IV. SUMMARY

We investigate the effective interactions for # hypernuclei
in the density-dependent relativistic mean-field model and
propose new parameter sets. Based on effective NN interac-
tions DD-ME2 and PKDD, the two ratios of scalar and vector
coupling constants between effective #N and NN interac-
tions, namely, Rσ and Rω, are optimized by fitting calculated
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TABLE VI. Neutron star and hyperonic star properties from various RMF models.

Neutron Star Hyperonic Star

Mmax/M� Rmax[km] ⇢c[fm�3] R1.4[km] ⇢1.4[fm�3] ⇤1.4 Mmax/M� Rmax[km] ⇢c[fm�3] R1.4[km] ⇢1.4[fm�3] ⇤1.4 1st threshold [ fm�3]

NL3 2.7746 13.3172 0.6638 14.6433 0.2715 1280 2.3354 12.5105 0.8129 14.6426 0.2715 1280 0.2804

BigApple 2.6005 12.3611 0.7540 12.8745 0.3295 738 2.2186 11.6981 0.8946 12.8750 0.3295 738 0.3310

TM1 2.1797 12.3769 0.8510 14.2775 0.3200 1050 1.8608 11.9255 0.9736 14.2775 0.3218 1050 0.3146

IUFSU 1.9394 11.1682 1.0170 12.3865 0.4331 510 1.6865 10.8653 1.1202 12.3520 0.4705 498 0.3800

DD-LZ1 2.5572 12.2506 0.7789 13.0185 0.3294 729 2.1824 11.6999 0.9113 12.0185 0.3294 729 0.3294

DD-MEX 2.5568 12.3347 0.7706 13.2510 0.3228 785 2.1913 11.8640 0.8890 13.2510 0.3228 785 0.3264

DD-ME2 2.4832 12.0329 0.8177 13.0920 0.3410 716 2.1303 11.6399 0.9296 13.0920 0.3410 716 0.3402

DD-ME1 2.4429 11.9085 0.8358 13.0580 0.3512 682 2.0945 11.5089 0.9560 13.0578 0.3526 681 0.3466

DD2 2.4171 11.8520 0.8481 13.0638 0.3528 686 2.0558 11.3446 0.9922 13.0630 0.3585 685 0.3387

PKDD 2.3268 11.7754 0.8823 13.5493 0.3546 758 1.9983 11.3789 1.0188 13.5400 0.3642 756 0.3264

TW99 2.0760 10.6117 1.0917 12.1805 0.4720 409 1.7135 10.0044 1.3466 11.9880 0.5710 352 0.3696

DDV 1.9319 10.3759 1.1879 12.3060 0.5035 395 1.5387 9.0109 1.7317 10.8990 0.9538 136 0.3547

DDVT 1.9253 10.0846 1.2245 11.6058 0.5458 302 1.5909 9.6244 1.4675 11.4515 0.6660 266 0.4465

DDVTD 1.8507 9.9294 1.2789 11.4615 0.5790 275 1.4956 9.3019 1.6071 10.9880 0.8570 182 0.4465

density, ⇢0. On the other hand, the �0 and !0 are solved in the symmetry nuclear matter,

which are constants. Therefore, R�⇤ and R!⇤ should satisfy the linear relation, when the

UN
⇤ is fixed in a RMF parameter set.

In this subsection, the TM1 parameter set for NN interaction will be adopted as an

example to discuss the impact of the magnitudes of R�Y and R!Y on the properties of

hyperonic star under the constraints of Y N potential at nuclear saturation density, UN
Y (⇢0).

From Eq. (33), we can find a linear relation between the ratios R�Y and R!Y (Y = ⇤, ⌃, ⌅)

for di↵erent hyperons. In TM1 parameter set, the magnitudes of the scalar potential, US =

g�N�0 and the vector potential, UV = g!N!0 for nucleons are 342.521 MeV and 274.085 MeV

at nuclear saturation density, respectively. With the empirical hyperon-nucleon potentials

for ⇤, ⌃ and ⌅ hyperons at nuclear saturation density, UN
⇤ = �30 MeV, UN

⌃ = +30 MeV

and UN
⌅ = �14 MeV, the following relations are obtained,

R!⇤ = 1.24969R�⇤ � 0.10946, (35)

R!⌃ = 1.24969R�⌃ + 0.10946, (36)

R!⌅ = 1.24969R�⌅ � 0.05108. (37)

Here the strange mesons �⇤ and � are not considered. Therefore, we can adjust the values of

R!Y and generate the corresponding R�Y simultaneously. To study the influences of R!Y on

hyperonic star, R!⇤, R!⌅, R!⌃ = 0.6, 0.8, 1.0 are discussed, respectively. Therefore, there

26

TABLE VI. Neutron star and hyperonic star properties from various RMF models.

Neutron Star Hyperonic Star

Mmax/M� Rmax[km] ⇢c[fm�3] R1.4[km] ⇢1.4[fm�3] ⇤1.4 Mmax/M� Rmax[km] ⇢c[fm�3] R1.4[km] ⇢1.4[fm�3] ⇤1.4 1st threshold [ fm�3]

NL3 2.7746 13.3172 0.6638 14.6433 0.2715 1280 2.3354 12.5105 0.8129 14.6426 0.2715 1280 0.2804

BigApple 2.6005 12.3611 0.7540 12.8745 0.3295 738 2.2186 11.6981 0.8946 12.8750 0.3295 738 0.3310

TM1 2.1797 12.3769 0.8510 14.2775 0.3200 1050 1.8608 11.9255 0.9736 14.2775 0.3218 1050 0.3146

IUFSU 1.9394 11.1682 1.0170 12.3865 0.4331 510 1.6865 10.8653 1.1202 12.3520 0.4705 498 0.3800

DD-LZ1 2.5572 12.2506 0.7789 13.0185 0.3294 729 2.1824 11.6999 0.9113 12.0185 0.3294 729 0.3294

DD-MEX 2.5568 12.3347 0.7706 13.2510 0.3228 785 2.1913 11.8640 0.8890 13.2510 0.3228 785 0.3264

DD-ME2 2.4832 12.0329 0.8177 13.0920 0.3410 716 2.1303 11.6399 0.9296 13.0920 0.3410 716 0.3402

DD-ME1 2.4429 11.9085 0.8358 13.0580 0.3512 682 2.0945 11.5089 0.9560 13.0578 0.3526 681 0.3466

DD2 2.4171 11.8520 0.8481 13.0638 0.3528 686 2.0558 11.3446 0.9922 13.0630 0.3585 685 0.3387

PKDD 2.3268 11.7754 0.8823 13.5493 0.3546 758 1.9983 11.3789 1.0188 13.5400 0.3642 756 0.3264

TW99 2.0760 10.6117 1.0917 12.1805 0.4720 409 1.7135 10.0044 1.3466 11.9880 0.5710 352 0.3696

DDV 1.9319 10.3759 1.1879 12.3060 0.5035 395 1.5387 9.0109 1.7317 10.8990 0.9538 136 0.3547

DDVT 1.9253 10.0846 1.2245 11.6058 0.5458 302 1.5909 9.6244 1.4675 11.4515 0.6660 266 0.4465

DDVTD 1.8507 9.9294 1.2789 11.4615 0.5790 275 1.4956 9.3019 1.6071 10.9880 0.8570 182 0.4465

density, ⇢0. On the other hand, the �0 and !0 are solved in the symmetry nuclear matter,

which are constants. Therefore, R�⇤ and R!⇤ should satisfy the linear relation, when the

UN
⇤ is fixed in a RMF parameter set.

In this subsection, the TM1 parameter set for NN interaction will be adopted as an

example to discuss the impact of the magnitudes of R�Y and R!Y on the properties of

hyperonic star under the constraints of Y N potential at nuclear saturation density, UN
Y (⇢0).

From Eq. (33), we can find a linear relation between the ratios R�Y and R!Y (Y = ⇤, ⌃, ⌅)

for di↵erent hyperons. In TM1 parameter set, the magnitudes of the scalar potential, US =

g�N�0 and the vector potential, UV = g!N!0 for nucleons are 342.521 MeV and 274.085 MeV

at nuclear saturation density, respectively. With the empirical hyperon-nucleon potentials

for ⇤, ⌃ and ⌅ hyperons at nuclear saturation density, UN
⇤ = �30 MeV, UN

⌃ = +30 MeV

and UN
⌅ = �14 MeV, the following relations are obtained,

R!⇤ = 1.24969R�⇤ � 0.10946, (35)

R!⌃ = 1.24969R�⌃ + 0.10946, (36)

R!⌅ = 1.24969R�⌅ � 0.05108. (37)

Here the strange mesons �⇤ and � are not considered. Therefore, we can adjust the values of

R!Y and generate the corresponding R�Y simultaneously. To study the influences of R!Y on

hyperonic star, R!⇤, R!⌅, R!⌃ = 0.6, 0.8, 1.0 are discussed, respectively. Therefore, there

26

TABLE VI. Neutron star and hyperonic star properties from various RMF models.

Neutron Star Hyperonic Star

Mmax/M� Rmax[km] ⇢c[fm�3] R1.4[km] ⇢1.4[fm�3] ⇤1.4 Mmax/M� Rmax[km] ⇢c[fm�3] R1.4[km] ⇢1.4[fm�3] ⇤1.4 1st threshold [ fm�3]

NL3 2.7746 13.3172 0.6638 14.6433 0.2715 1280 2.3354 12.5105 0.8129 14.6426 0.2715 1280 0.2804

BigApple 2.6005 12.3611 0.7540 12.8745 0.3295 738 2.2186 11.6981 0.8946 12.8750 0.3295 738 0.3310

TM1 2.1797 12.3769 0.8510 14.2775 0.3200 1050 1.8608 11.9255 0.9736 14.2775 0.3218 1050 0.3146

IUFSU 1.9394 11.1682 1.0170 12.3865 0.4331 510 1.6865 10.8653 1.1202 12.3520 0.4705 498 0.3800

DD-LZ1 2.5572 12.2506 0.7789 13.0185 0.3294 729 2.1824 11.6999 0.9113 12.0185 0.3294 729 0.3294

DD-MEX 2.5568 12.3347 0.7706 13.2510 0.3228 785 2.1913 11.8640 0.8890 13.2510 0.3228 785 0.3264

DD-ME2 2.4832 12.0329 0.8177 13.0920 0.3410 716 2.1303 11.6399 0.9296 13.0920 0.3410 716 0.3402

DD-ME1 2.4429 11.9085 0.8358 13.0580 0.3512 682 2.0945 11.5089 0.9560 13.0578 0.3526 681 0.3466

DD2 2.4171 11.8520 0.8481 13.0638 0.3528 686 2.0558 11.3446 0.9922 13.0630 0.3585 685 0.3387

PKDD 2.3268 11.7754 0.8823 13.5493 0.3546 758 1.9983 11.3789 1.0188 13.5400 0.3642 756 0.3264

TW99 2.0760 10.6117 1.0917 12.1805 0.4720 409 1.7135 10.0044 1.3466 11.9880 0.5710 352 0.3696

DDV 1.9319 10.3759 1.1879 12.3060 0.5035 395 1.5387 9.0109 1.7317 10.8990 0.9538 136 0.3547

DDVT 1.9253 10.0846 1.2245 11.6058 0.5458 302 1.5909 9.6244 1.4675 11.4515 0.6660 266 0.4465

DDVTD 1.8507 9.9294 1.2789 11.4615 0.5790 275 1.4956 9.3019 1.6071 10.9880 0.8570 182 0.4465

density, ⇢0. On the other hand, the �0 and !0 are solved in the symmetry nuclear matter,

which are constants. Therefore, R�⇤ and R!⇤ should satisfy the linear relation, when the

UN
⇤ is fixed in a RMF parameter set.

In this subsection, the TM1 parameter set for NN interaction will be adopted as an

example to discuss the impact of the magnitudes of R�Y and R!Y on the properties of

hyperonic star under the constraints of Y N potential at nuclear saturation density, UN
Y (⇢0).

From Eq. (33), we can find a linear relation between the ratios R�Y and R!Y (Y = ⇤, ⌃, ⌅)

for di↵erent hyperons. In TM1 parameter set, the magnitudes of the scalar potential, US =

g�N�0 and the vector potential, UV = g!N!0 for nucleons are 342.521 MeV and 274.085 MeV

at nuclear saturation density, respectively. With the empirical hyperon-nucleon potentials

for ⇤, ⌃ and ⌅ hyperons at nuclear saturation density, UN
⇤ = �30 MeV, UN

⌃ = +30 MeV

and UN
⌅ = �14 MeV, the following relations are obtained,

R!⇤ = 1.24969R�⇤ � 0.10946, (35)

R!⌃ = 1.24969R�⌃ + 0.10946, (36)

R!⌅ = 1.24969R�⌅ � 0.05108. (37)

Here the strange mesons �⇤ and � are not considered. Therefore, we can adjust the values of

R!Y and generate the corresponding R�Y simultaneously. To study the influences of R!Y on

hyperonic star, R!⇤, R!⌅, R!⌃ = 0.6, 0.8, 1.0 are discussed, respectively. Therefore, there

26

Y. T. Rong, Z. H. Tu, S. G. Zhou, Phys. Rev. C 104(2021)054321



12/05/2024 Jinniu Hu 22

The correlations between R𝛚 and R𝛔

The EoSs with different the coupling strengths

FIG. 8. The pressure of hyperonic matter as a function of baryon density with di↵erent

R!⇤, R!⌅, R!⌃. The corresponding speeds of sound in units of the speed of light shown in

sub-figure. The threshold of the first hyperon is indicated by the filled diamonds. The meaning of

the curves are same as those in Fig. (7).

R!⇤ = 1.0, which satisfies the constraints from the recent massive neutron star observables.

The corresponding radii turn smaller and the central densities get larger.

FIG. 9. The hyperonic star masses as functions of radius and the central baryon density for TM1

models with di↵erent R!⇤, R!⌅, R!⌃. The threshold of the first hyperon is indicated by the filled

diamonds.

Finally, the thresholds of hyperons and properties of hyperonic star with di↵erent

28
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The correlations between R𝛚 and R𝛔

The Mass-radius relation with different the coupling strengths

FIG. 8. The pressure of hyperonic matter as a function of baryon density with di↵erent

R!⇤, R!⌅, R!⌃. The corresponding speeds of sound in units of the speed of light shown in

sub-figure. The threshold of the first hyperon is indicated by the filled diamonds. The meaning of

the curves are same as those in Fig. (7).

R!⇤ = 1.0, which satisfies the constraints from the recent massive neutron star observables.

The corresponding radii turn smaller and the central densities get larger.

FIG. 9. The hyperonic star masses as functions of radius and the central baryon density for TM1

models with di↵erent R!⇤, R!⌅, R!⌃. The threshold of the first hyperon is indicated by the filled

diamonds.

Finally, the thresholds of hyperons and properties of hyperonic star with di↵erent

28
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! Introduction 

! The massive neutron star from DDRMF 

! The equation of state from machine learning 

! Summary
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Figure 1. Schematic of the TOV mapping ΨTOV and the regression analysis of the inverse TOV
mapping from the M -R data.

to train the NN with as many and different ω’s as possible. The trained NN can then
receive the M -R data for one particular ω and return the output of the most likely EoS
correspondingly. To put it another way, the “inversion” of the mapping Πobs ◦ ΨTOV is
approximated by the regression, particularly by the deep NN in our approach, which would
be symbolically written as Reg[Πobs ◦ ΨTOV]−1.

In the supervised learning, we need to prepare the training data and the validation
data composed of pairs of the input M -R data and the desired output EoS. To generate
the training data efficiently, we make use of the asymmetry between Πobs ◦ ΨTOV and
Reg[Πobs ◦ ΨTOV]−1; that is, we can straightforwardly calculate the forward mapping of
Πobs ◦ ΨTOV by modeling the observation Πobs(ω), while the latter inverse mapping, which
is what we currently want to know, is more non-trivial. Thus, first, we randomly generate
many possible answer EoSs represented by several parameters. We next generate the
corresponding M -R data by applying the forward mapping with various ω’s. We will
explain technical details of handling and simplifying ω in section 2.3.

Now, we turn to the description of the architecture of our NN model and we will
optimize the model parameters so that the model can infer the answer EoS corresponding
to the input training M -R data. During the training, it is important to monitor the
training quality by checking the prediction error behavior for the validation data. After
the optimization process is complete with good convergence of the validation error, we can
test the predictive power using the mock data for which the true answer EoS is known (see
section 3 for actual calculations). Once the method passes all these qualification tests, we
finally proceed to the application of the real observational data to obtain the most realistic
EoS (see section 4 for details).

Here, we comment on an alternative possibility of the inference problem formulation.
As already mentioned, the inverse TOV mapping, Ψ−1

TOV, is well-defined by itself. Thus, it
is also feasible to decompose the inference as Reg[Πobs ◦ ΨTOV]−1 = Ψ−1

TOV ◦ Reg[Πobs]−1

and train the NN aimed to approximate Reg[Πobs]−1; that is, the NN model would predict
the M -R curve from the input M -R data. We will not adopt this strategy since it is unclear

– 6 –

Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019 
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The feedforward neural network  

introduce a new principle to infer the neutron star EoS
utilizing deep (i.e., many-layered) neural network of
machine learning, which has been successfully applied
to QCD, nuclear physics, and gravitational wave data
analysis [18–24]. Throughout this paper, we use the natural
unit; c ¼ G ¼ 1.

II. NEURAL NETWORKS

Here, we make a brief overview on machine learning and
the deep neural network. This method provides a handy and
powerful way to find an optimized mapping expressed in
the “neural network” model. For the “supervised” learning,
we first prepare “training data”, that is, a data set of input
and corresponding output, and then optimize the parameter
set of the mapping from the input to the output. Once the
optimization is sufficiently achieved or the training is
complete, the neural network model can conversely make
an educated guess about the most likely output correspond-
ing to a given input. The advantage of machine learning, as
compared to ordinary fitting procedures, is that we need not
rely on preknowledge about fitting functions because the
multilayer structures are capable of capturing any continu-
ous functions.
The model function of the feedforward neural network

can be expressed as follows:

yi ¼ fi
!
fxjg

"""
n
Wð1Þ

jk ; a
ð1Þ
j ;…;WðLÞ

jk ; aðLÞj

o#
; ð1Þ

where fxig and fyig are input and output data, respectively.
The coefficients fWðkÞ

ij ; a
ðkÞ
i g are the fitting parameters. We

setup Lþ 1 layers (including the input and the output
layers), each consisting of nodes called neurons. For the
first layer (which is labeled as 0 in this paper), the input is
set as xð0Þi ¼ xi ð1 ≤ i ≤ N1ÞwithN1 being the size of input
fxig. For the subsequent layers, the transformations are
iteratively applied as

xðkþ1Þ
i ¼ σðkþ1Þ

$XNk

i¼1

Wðkþ1Þ
ij xðkÞj þ aðkþ1Þ

i

%
; ð2Þ

where 1 ≤ i ≤ Nkþ1 with Nkþ1 being the neuron numbers
in the (kþ 1)-th layer. The final output from the L-th layer
becomes yi ¼ fiðfxjgÞ ¼ xðLÞi (1 ≤ i ≤ NL) with NL being
the size of output fyig. Here, σðkÞðxÞ’s are called “activation
functions” and the typical choices include the sigmoid
function σðxÞ ¼ 1=ðex þ 1Þ, the ReLU σðxÞ ¼ maxf0; xg,
hyperbolic tangent σðxÞ ¼ tanhðxÞ, etc. The fitting para-
meters, WðkÞ

ij and aðkÞi , on the k-th layer, denote the weights
between nodes in two adjacent layers and the activation
offset at each neuron called the bias, respectively. We note
that there are no physical motivations to these fitting
parameters in this model-independent setup, and therefore
these fitting parameters have no physical meaning at the

setup stage. The general design structure is schematically
depicted in Fig. 1, in which the calculation proceeds from
the left with input fxig to the right with output fyig.
For the actual optimization procedure we choose a “loss

function” to be minimized; if the loss function is the mean
square deviation, the learning amounts to the standard least
square method with fi expressed by the neural network.

III. GENERATING TRAINING DATA

The training data consists of randomly generated
EoS parameters and corresponding observational points,
(Mi, Ri), which will be used as output and input of the
neural network, respectively. For better learning, the train-
ing data quality is important. For the training purpose to
make the neural network adaptive enough to cover any
possible answers, we can include even intuitively unnatural
data into the training data.
First, we elucidate our scheme for the EoS generation

(see Ref. [25] for details). Up to the density ρ0, we use a
conventional nuclear EoS (i.e., SLy [26] in this study), and
a range ½ρ0; 8ρ0& is equally partitioned in logarithmic scale
into five segments. We randomly assign the average sound
velocity dp=dρ ¼ c2s to five segments according to the
uniform distribution within 0.02 < c2s < 0.98 where a
small margin by 0.02 is a regulator to avoid singular
behavior of the TOVequation. From these sound velocities
we determine the pressure values at segment boundaries.
We interpolate the EoS inside of each segment assuming
polytrope p ∝ ρΓ. We note that we allow for small c2s
corresponding to a (nearly) first-order phase transition. We
generated 2000 EoSs in this way.
Next, we solve the TOVequation [8] using the generated

pðρÞ from m ¼ r ¼ 0 and the enthalpy density h ¼ hc
(where hc is a free parameter corresponding to a choice of
the central core density) until h hits zero (see Ref. [10] for
the formulation using h). Then, we identifyM ¼ mðh ¼ 0Þ
and R ¼ rðh ¼ 0Þ, so that (M, R) with various hc gives the
M-R curve. For each randomly generated EoS we get the
M-R curve and identify the maximum mass Mmax. If Mmax
does not reach the observed mass [i.e., 1.97M⊙ from the
lower bound of ð2.01' 0.04ÞM⊙ [3] where M⊙ denotes
the solar mass], such EoSs are rejected from the ensemble.
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Figure 11. Schematic flow of data generation procedure for the analysis in section 4.

σM = 0.1M! and σR = 0.5 km, for all ∆Mi and ∆Ri. In reality, however, they should vary
for different i, i.e., σM,i and σR,i should correspond to the observational uncertainties of
(Mi, Ri). To deal with the real observational data, the revised procedure for sampling the
M -R points is sketched in figure 11. We need to design the NN with an input of information
including σM,i and σR,i: the input variables are extended to (Mi, Ri; σM,i, σR,i).

We shall recapitulate the data generation scheme as follows. In the same way as in
section 3 we prepare 5 EoS parameters c2s,i (i = 1, . . . 5) in the output side. In this section
the training data comprises 14×4 input parameters, i.e., (Mi, Ri; σM,i, σR,i) (i = 1, . . . , 14).
We note that i runs to not 15 but 14 corresponding to the number of observed neutron stars
as explained in section 4.1. We calculate the M -R curve for each EoS, and then select 14
points of (M∗

i , R
∗
i ) on the M -R curve and add statistical fluctuations of ∆Mi and ∆Ri [see

figure 11 (3)]. Let us go into more detailed procedures now. Unlike σM and σR in section 3
here we randomly generate σM,i and σR,i differently for i = 1, . . . 14. These variances, σM,i

and σR,i, are sampled from the uniform distributions, [0,M!) and [0, 5 km), respectively.
In view of the observational data, these ranges of the distributions should be sufficient to
cover the realistic situations. Then, ∆Mi and ∆Ri are sampled according to the Gaussian
distributions with these variances, σM,i and σR,i. Finally we obtain the training data,
(Mi = M∗

i + ∆Mi, Ri = R∗
i + ∆Ri;σM,i,σR,i) (i = 1, . . . 14) [see figure 11 (4)]. Hereafter

we call these 14 tetrads of (Mi, Ri;σM,i,σR,i) an observation.
Now we prepare the training data set by taking multiple observations. For each EoS

we randomly generate 100 different pairs of (σM,i,σR,i), and then we make another 100
observations for each (σM,i,σR,i). From the former 100 pairs the NN is expected to learn
that the observational uncertainties may vary, and the latter tells the NN that the genuine
M -R relation may deviate from the observational data. In total we make ns = 10000
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The Gaussian process 
Assume the function  

to satisfy

Summary of Lecture 4: The Gaussian process

Assume that:
y = f(x).

Where f(x) is a function with the following propertie, for any set x1, x2, · · · , xn it
satisfies:
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...
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For simplicity we will use µ = 0.
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The observation data is  

Summary of Lecture 4: The Gaussian process

How to do inference with the Gaussian process?
• Observed data:

(x1, y1), (x2, y2), · · · , (xn, yn)

• Want to compute a new point: x⇤
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The prediction value of f is  

Summary of Lecture 4: The Gaussian process

Let:
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The Gaussian process==
It can be use the matrix notation  

where the mean function is zero for notational simplicity. 
 The distribution of prediction point can be obtained   

Summary of Lecture 4: The Gaussian process

Let:
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Summary of lecture 4: The Gaussian process

This gives a distribution over f(x?), which we can condition on observations y

f(x?) |y ⇠ N
�
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(Here, x? is a vector with one element for each pixel on the screen ! the samples look continuous!)

11 / 38 antonio.horta.ribeiro@it.uu.se Gaussian processes part II



12/05/2024 Jinniu Hu 30

The EOSs from the neural network 

present work are almost identical, which are also consistent
with the model-informed prior. Since all of them are more
strictly constrained by the theoretical EOSs. On the contrary,
the model-agnostic prior has a loose boundary. It may consider
a greater range of plausible EOSs.

To produce an EOS of neutron stars (including the high-
density region) with the GPR method and aforementioned
schemes, seven pressure points p iln 1, 2, , 7i ( )"� were
selected, with the same interval, in the range of pln 1, 7[ ]� . fi
was randomly generated in the training interval at each pln i
point as an initial data set p, lni i( )G . The EOS below nuclear
saturation density was chosen as the one from the SLy4 set. A
smooth and continuous pln( )G function is fitted by the GPR
method, where the hyperparameters, l and σ, are obtained by
maximizing the marginal log-likelihood, as shown in
Equation (11). Furthermore, the star point, pln 11 ( )G G� � ,
was fixed as the magnitude from the DDME1 parameter set.

The M–R relation of a neutron star can be calculated using
the EOS from the GPR method by solving the TOV equation.
In the present framework, the training data set of the DNN
should assemble the points on the M–R curve, which
correspond to the observables. The method proposed by

Fujimoto et al. (2021) is used in this work to generate training
data. First, the maximum masses of neutron stars less than
2.2Me and the M–R relations that did not satisfy the radii
constraints of PSR J0740+6620 and PSR J0030+0451 (Miller
et al. 2019, 2021) were excluded from the training data. Then,
14 points in the mass regions, M M, max[ ]: on the M–R curve
were randomly chosen as the original data points (Mi, Ri) to
simulate the real observations of the 14 available neutron stars.
To consider the errors in the observations, the variances of the
Gaussian distributions about the mass and radius, MiT and RiT ,
were randomly taken from the uniform distribution in the
ranges, M0,[ ]: and 0, 5km[ ]. The deviations of mass and
radius M R,i i( )% % were calculated by the Gaussian distribution
with the variances of MiT and RiT . Finally the real data
point M M R R,i i i i( )� % � % was obtained. The set
M M R R, , ,i i i i M Ri i( )T T� % � % can be compared to the
observational data of neutron stars.
A group of i= 14 data points (Mi, Ri) was selected from the

M–R curve generated by each EOS, and j= 100 groups of
different variances ,M Rij ij( )T T were randomly sampled for each
Mi–Ri data point. Later, k= 100 groups of deviations, ΔMijk
and ΔRijk were provided by each variance set, ,M Rij ij( )T T . In
this way, 100× 100 sets of data for each EOS were prepared
and 14 data points were sampled. The above process was
repeated by 500 times to include as wide a range as possible,
resulting in 500 × 100 × 100 = 5 million sets, where one set
includes 14 data points.
For the architecture of the NN, the Python library,

keras (Chollet et al. 2015) was employed, with
TensorFlow (Abadi et al. 2016) as the backend. The number
of NN layers, their corresponding neurons, and the activation
functions are shown in Table 1. The hyperbolic tangent
function of the output layer makes the results fall between (−1,
1), speeding up the training. The msle is chosen as the loss
function, given in Equation (19). The optimization method was
Adam (Kingma & Ba 2014) by taking the batch size as 1000.
The default initialization NN argument was the Glorot uniform
distribution (Glorot & Bengio 2010).
The DNN models for a full training set of 5 million data were

compared with a random sampling of 1 million data in the training
set, giving similar results, but with the latter greatly improving the
training efficiency. In addition, for all models, the changes in loss

Figure 2. The generation range of f–- pln . We will randomly select points
within this range and then use the GPR method to generate EOS. In panel (a)
the nine EOSs are treated to obtain the mean μ and variance σ, whose 95%
confidence interval is taken to obtain the fitting range. In panel (b), the
generation range is based on the DDME1 curve, with a fluctuation of 0.3.

Figure 3. The corresponding ò−p relations of schemes 1 and 2 in Figure 2 and
the model-informed and model-agnostic priors in the Bayesian inference
method by Landry & Essick (2019).
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within this range and then use the GPR method to generate EOS. In panel (a)
the nine EOSs are treated to obtain the mean μ and variance σ, whose 95%
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includes 14 data points.
For the architecture of the NN, the Python library,

keras (Chollet et al. 2015) was employed, with
TensorFlow (Abadi et al. 2016) as the backend. The number
of NN layers, their corresponding neurons, and the activation
functions are shown in Table 1. The hyperbolic tangent
function of the output layer makes the results fall between (−1,
1), speeding up the training. The msle is chosen as the loss
function, given in Equation (19). The optimization method was
Adam (Kingma & Ba 2014) by taking the batch size as 1000.
The default initialization NN argument was the Glorot uniform
distribution (Glorot & Bengio 2010).
The DNN models for a full training set of 5 million data were

compared with a random sampling of 1 million data in the training
set, giving similar results, but with the latter greatly improving the
training efficiency. In addition, for all models, the changes in loss
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the nine EOSs are treated to obtain the mean μ and variance σ, whose 95%
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The spectral representation 

support EOSs with ε < 0, since its range is necessarily the
whole real line. Moreover, by default, GPR on εðpÞ would
include thermodynamically unstable or acausal EOSs—i.e.,
functions with dp=dε < 0 or superluminal sound speeds
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dε

p
> c. To incorporate causality, thermody-

namic stability, and positivity of the total energy automati-
cally, we instead build a GP over

ϕ ¼ log
"
c2

dε
dp

− 1

#
: ð13Þ

The auxiliary variable ϕ, first introduced in Ref. [35], can
take any value along the real line, and it naturally
incorporates the desired physical constraints because
ϕ ∈ R corresponds to 0 ≤ dp=dε ≤ c2. Positivity of
p then ensures cs ≤ c and ε ≥ 0. The spectral approach
to EOS inference [36,37] employed in Ref. [15] also starts
with a similar transformation, but goes on to decompose the
EOS onto a small set of basis functions. In contrast, we
assign a prior process to ϕ ¼ ϕðlogpÞ via GPR condi-
tioned on tabulated EOSs. The process over ϕ can easily be
translated to a process over ε. Since the map from ϕ to ε is
nonlinear, Gaussian uncertainty in ϕ will, however, gen-
erally not correspond to Gaussian uncertainty in ε.
We condition the GP for ϕðlogpÞ on a training set of n

candidate EOSs εðαÞðpÞ from the literature. The data for the
αth candidate EOS constitute a function log εðαÞðlogpðαÞ

j$ Þ
with ordinates log εðαÞj$ and abscissae logpðαÞ

j$ .
3 As the

amount of flog εðαÞj$ ; logp
ðαÞ
j$ g data available may vary from

candidate EOS to candidate EOS, and the relative weight
assigned to each model in the training set is proportional to
the number of data points included, we resample each
εðαÞðpÞ to s points so that the GP for ϕðlogpÞ is
conditioned equally on every input EOS. This need not
be the case—one could formulate a mixture model of GPs
(see, e.g., Refs. [62,63]) to establish a weighted training set
of candidate EOSs—but for simplicity we assume equal
weights here. This resampling could be performed with,
e.g., linear interpolation, but we instead use GPR to obtain
an estimate of the uncertainty associated with the inter-
polation. Thus, we construct a GP representation of
ϕðαÞðlogpÞ for each candidate EOS in the training set,
such that one realization of the αth GP is an s-fold list of
ordinates fϕðαÞ

i g at evenly spaced points in logp. In this
way, the maps from ε to ϕ for the tabulated EOSs—which
come without uncertainties—are effectively equipped with
error bars. The GPs for ϕðαÞðlogpÞ are subordinate to, and
used as input for, the overarching GP for ϕðlogpÞ. We next
describe the construction of the GPs for ϕðαÞðlogpÞ in some
detail, before addressing the GP for ϕðlogpÞ itself.

For every candidate EOS εðαÞðpÞ, we first fit log εðαÞ with
a low-order polynomial in logp and construct a GP for the
residuals. The resulting joint distribution on log εðαÞ, its first
derivative ∂i log εðαÞ ≔ d log εðαÞ=d logpjp¼pi

and the tabu-

lated data flog εðαÞj$ g is
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Here we take the values flog ε̂ðαÞi ; ∂i log ε̂ðαÞ; log ε̂
ðαÞ
j$ g from

the low-order polynomial fit as the mean in the process and
model correlations among the residuals around this fit.
While we assume a squared-exponential covariance kernel
for all tabulated EOSs, we choose hyperparameters
ðσðαÞ; lðαÞÞ by hand separately for each KðαÞ

ij and inspect
the resulting GPs to ensure that they adequately reproduce
the features of the input EOSs.
Conditioning the joint distribution on the tabulated

ordinates flog εðαÞj$ g via Eq. (5), we obtain
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where the explicit expressions for the expectation value
and conditioned covariance follow from Eqs. (9) and (10).
The corresponding process for ϕðαÞ is calculated from
Eq. (13) as

ϕðαÞ
i j logpi; flog ε

ðαÞ
j$ ; logp

ðαÞ
j$ g

∼N ðEðαÞðϕiÞ;CovðαÞðϕi;ϕjÞÞ; ð16Þ

with

EðαÞðϕiÞ ¼ log
"
EðαÞð∂i log εÞ

"
eE

ðαÞðlog εiÞ

pi

#
c2 − 1

#
: ð17Þ

We approximate the covariance matrix CovðαÞðϕi;ϕjÞ
through a first order Taylor expansion for ϕi in terms of
log εi and ∂i log ε, i.e.,

3Candidate EOS data tabulated as p vs ρ can also be
accommodated by transforming the rest-mass energy density
to total energy density via Eq. (12).
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where the explicit expressions for the expectation value
and conditioned covariance follow from Eqs. (9) and (10).
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We approximate the covariance matrix CovðαÞðϕi;ϕjÞ
through a first order Taylor expansion for ϕi in terms of
log εi and ∂i log ε, i.e.,

3Candidate EOS data tabulated as p vs ρ can also be
accommodated by transforming the rest-mass energy density
to total energy density via Eq. (12).
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sible, resulting in 500 ⇥ 100 ⇥ 100 = 5, 000, 000 sets,456

where one set includes 14 data points.457

For the architecture of the NN, the Python library,458

Keras (Chollet et al. 2015) was employed, with Tensor-459

Flow (Abadi et al. 2016) as the backend. The number460

of NN layers, their corresponding neurons, and the ac-461

tivation functions are shown in Table 1. The hyperbolic462

tangent function of the output layer makes the results463

fall between (�1, 1), speeding up the training. The msle464

is chosen as the loss function, given in Eq. (19). The op-465

timization method was Adam (Kingma & Ba 2014) by466

taking the batch size as 1000. The default initialization467

NN argument was the Glorot Uniform distribution (Glo-468

rot & Bengio 2010).469

The DNN models for a full training set of 5, 000, 000470

data were compare with a random sampling of471

1, 000, 000 data in the training set, giving similar re-472

sults, but with the latter greatly improving the training473

e�ciency. In addition, for all models, the changes in loss474

functions for the training of epoch were almost identical.475

The loss functions estimated for the validation data and476

training data are shown as an example in Fig. 4. When477

the epoch > 10, the verification loss is consistent with478

the training loss, whereas when the epoch > 100, the479

verification loss is stable. Therefore, each DNN model480

was trained with 1, 000, 000 data. The validation set481

was taken as the 10, 000 sets from the rest 4, 000, 000482

sets to check the convergence. Once the epoch = 100,483

the model was considered finished.484

Figure 4. The Loss probabilities as functions of epoch with
the training data and validation data.

485

486

Due to the di↵erences in initial input and training487

data, there was some uncertainty about the output re-488

sults of the DNN. Therefore, the process was repeated489

100 times to generate 100 independent DNN models.490

The uncertainties in the training results were estimated491

from the predicted 100 EOSs. In Fig. 5, 200 relations492

about �-ln p from scheme 1 in panel (a) and scheme 2 in493

panel (b) are reconstructed through the training data of494

the DNN. Each curve is smoothly connected with seven495

output points by the GPR method, as shown in the in-496

serts. It was found that most of these curves have simi-497

lar pressure-dependence behaviors. Their di↵erences in-498

crease in the high-density region due to the observation499

discrepancies associated with the 14 neutron stars.500

Figure 5. The 200 DNN models about �-ln p from schemes
1 and 2.

501

502

The �-ln p relations must be converted to the ✏-p func-503

tion by integrating the Eq. (14) to obtain the EOS of504

the neutron star. In Fig. 6, the neutron star EOSs with505

the 68% and 95% confidence levels from the DNN with506

scheme 1 in panel (a) and scheme 2 in panel (b) are507

shown and compared to those joint constraints from the508

GW170817 and GW190814 events (Abbott et al. 2020)509

and the EOS from DDME1. In the inserts, the origi-510

nal 200 EOSs from the DNN training are plotted. To511

analyze the uncertainties of the EOSs, it was assumed512

that the pressures at each energy density from the ma-513

chine learning model satisfy the Gaussian distribution.514

Therefore, the mean EOS was obtained as the dashed515
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Layer Number of neurons Activation function

1(Input) 56 N/A

2 60 ReLU

3 40 ReLU

4 40 ReLU

5(Output) 6 tanh

Table 1. The setup of present DNN. The number of input and output neurons can be modified according to di↵erent network
conditions. Here, the number of neurons at output layer is 6, because �(ln p = 1) has been fixed as the value obtained from
DDME1 set.

curve with the dark blue shadow representing the 68%516

confidence level and the light blue shadow, the 95%, re-517

spectively. In the low-density region, our estimations are518

consistent with the joint constraints on the EOS from519

the GW170817 and GW190814 events. With density520

increasing, present EOSs are softer than the joint con-521

straints, since the maximum masses of the 14 neutron522

stars are just around 2M�. Furthermore, the predicted523

EOS di↵ers slightly from the EOS of DDME1 in scheme524

2, despite this being regarded as the mean value of the525

training data. In the mediate region of energy density,526

the EOS generated by the DDME1 is harder than the527

predicted one, since the radius of the neutron star from528

DDME1 is a little larger when compared with the obser-529

vations of the 14 neutron stars, as shown later. These530

results demonstrate that the EOS of the present frame-531

work is independent of the initial input of the training532

set.533534

Here, it must be emphasized that the incon-535

sistencies in EOSs predicted by LIGO-Virgo-536

KAGRA (LVK) collaborations from GW170817537

and GW190814 events, and present work are538

generated by the di↵erent theoretical frame-539

works and priors. In the LVK analysis, the EOSs540

in the priors were given by the spectral represen-541

tation and are determined by the adiabatic index542

� as shown in Refs. (Read et al. 2009) and (Lind-543

blom 2010). The EOS parameters of the prior544

ranges in LVK were choices from the 34-neutron545

star matter EOSs, including the PAL6, APR1-4,546

WFF1-3, MS1-2, and so on (Read et al. 2009).547

The maxim masses of the neutron star from these548

EOSs are in the range of 1.47 ⇠ 2.78M� and the549

radii at 1.4M� are 9.36 ⇠ 15.47 km. Correspond-550

ingly, the prior of EOSs space in the present551

framework is taken from the 9 RMF parame-552

ter sets, which only can generate the maximum553

masses of the neutron stars from 2.0 ⇠ 2.4M�.554

Therefore, the harder EOSs were predicted by555

LVK at high-density regions.556

Once the EOS of the neutron star were determined,557

its M -R relation was obtained by solving the TOV558

Figure 6. The EOSs from the nonparametric machine
learning methods with scheme 1 and 2 and comparing
to those from the joint constraints from GW170817 and
GW190814 events, and from the DDME1 set.

equation. The M -R relations from our deduced EOSs559

are plotted in Fig. 7, with 68% (dark blue) and 95%560

(light blue) confidence levels. The corresponding M -561

R distributions of the observed 14 neutron stars are562

given as contour plots. The masses of massive neu-563

tron stars, PSR J0348+0432, PSR J0740+6620, and564

PSR J1614-2230; the secondary compact object of the565

GW190814 event; and the radii of PSR J0030+0451566

and PSR J0740+6620 from the NICER are given and567

compared. The predicted EOSs from schemes 1 and 2568

nicely reproduce the neutron star observations and are569
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able to generate massive neutron stars. Their radii are570

consistent with the results of the 14 observed neutron571

stars and the mass-radius simultaneous measurements572

from NICER. Furthermore, the M -R relation from the573

DDME1 set is shown as a solid line, which was chosen574

as the mean value to generate the training data set in575

scheme 2. Its radius at the mediate mass region is a576

little larger when compared with the 14 observed neu-577

tron stars. The output EOSs of the DNN from scheme578

1 provide smaller radii, which coincide with the distri-579

bution of observables. This shows that the final results580

of present framework is independent of the generating581

scheme for the training data.582

Figure 7. The mass-radius relation of neutron star from the
nonparametric machine learning method, the observation
distributions from 14 neutron stars, the masses of massive
neutron stars, and the radii constraints from the NICER.

583

584

In a binary neutron star merger, one neutron star will585

be deformed by the external gravitational field of an-586

other star. The magnitude of deformation is denoted as587

the tidal deformability, which is dependent on the EOS588

of the neutron star and can be extracted from the grav-589

itational wave provided by the binary neutron star. In590

the GW170817 event, the dimensionless tidal deforma-591

bility at 1.4M� was inferred as ⇤1.4 = 190+390
�120 (Abbott592

et al. 2018). In Fig. 8, the dimensionless tidal deforma-593

bilities as functions of neutron star masses from schemes594

1 and 2, with 68% and 95% confidence levels, are plot-595

ted and compared to the constraint from the GW170817596

event and the results from the DDME1 set. The ⇤ de-597

creases with the neutron star mass since it is propor-598

tional to R5/M5 of the neutron star. Therefore, the ⇤599

from the DDME1 is relatively larger. The ⇤1.4 from the600

reported machine learning framework completely satis-601

fies the measurements from the gravitational wave de-602

tection.603

Figure 8. ⇤-M relation, generated by the predicted EOSs
and compared to that from DDME1 and the values extracted
from GW170817 events.

Table 2 lists the properties of neutron stars pre-604

dicted by the DNN with nonparametric training data:605

namely, the maximum masses of neutrons stars, the606

corresponding radii, the radii at 1.4M� and 2.08M�,607

and the dimensionless tidal deformability at 1.4M� with608

68% and 95% confidence levels in schemes 1 and 2.609

These variables were compared to the results from the610

DDME1 parameter set. Both of these two schemes can611

generate the massive neutron star with a mass close to612
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little larger when compared with the 14 observed neu-577

tron stars. The output EOSs of the DNN from scheme578

1 provide smaller radii, which coincide with the distri-579

bution of observables. This shows that the final results580

of present framework is independent of the generating581

scheme for the training data.582

Figure 7. The mass-radius relation of neutron star from the
nonparametric machine learning method, the observation
distributions from 14 neutron stars, the masses of massive
neutron stars, and the radii constraints from the NICER.

583

584

In a binary neutron star merger, one neutron star will585

be deformed by the external gravitational field of an-586

other star. The magnitude of deformation is denoted as587

the tidal deformability, which is dependent on the EOS588

of the neutron star and can be extracted from the grav-589

itational wave provided by the binary neutron star. In590

the GW170817 event, the dimensionless tidal deforma-591

bility at 1.4M� was inferred as ⇤1.4 = 190+390
�120 (Abbott592

et al. 2018). In Fig. 8, the dimensionless tidal deforma-593

bilities as functions of neutron star masses from schemes594

1 and 2, with 68% and 95% confidence levels, are plot-595

ted and compared to the constraint from the GW170817596

event and the results from the DDME1 set. The ⇤ de-597

creases with the neutron star mass since it is propor-598

tional to R5/M5 of the neutron star. Therefore, the ⇤599

from the DDME1 is relatively larger. The ⇤1.4 from the600

reported machine learning framework completely satis-601

fies the measurements from the gravitational wave de-602

tection.603

Figure 8. ⇤-M relation, generated by the predicted EOSs
and compared to that from DDME1 and the values extracted
from GW170817 events.

Table 2 lists the properties of neutron stars pre-604

dicted by the DNN with nonparametric training data:605

namely, the maximum masses of neutrons stars, the606

corresponding radii, the radii at 1.4M� and 2.08M�,607

and the dimensionless tidal deformability at 1.4M� with608

68% and 95% confidence levels in schemes 1 and 2.609

These variables were compared to the results from the610

DDME1 parameter set. Both of these two schemes can611

generate the massive neutron star with a mass close to612
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Summary

The neutron star is a natural laboratory to check the nuclear 
many-body methods

Equations of state of massive neutron star can be described 
within DDRMF model.

The masses of hyperonic star can approach two times solo 
mass.

A nonprameretric method was proposed to infer the equation 
of state of compact star with deep neural network. 
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Thank you very much 
for your attention! 
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The neutron star mass as function of Radius

The mass-radius relation

star with 1.4M! is particularly important for the investigation of astronomy physics. The

radius of 1.4M! neutron star is about 14.20 km for the original TM1 parameter set with

L = 110.8 MeV. It decreases as 12.86 km for L = 40 MeV. The latest data analysis from

LIGO and Virgo collaborations displayed the radii of binary neutron stars in GW170817 are

11.9 ± 1.4 km at the 90% credible level. Many other works also indicated R1.4 should be

smaller than 13.5 km with the constraint of GW170817. Therefore, smaller L is preferred

in the multi-messenger age.

FIG. 4: The neutron star mass-radius relations with different slopes, L = 40, 60, 80, 100, 110.8

MeV, respectively for TM1 parameter set.

FIG. 5: The relation between energy slope and neutron star radii at 1.4M!.

11

1.4M⊙ 

The symmetry energy affects the neutron star at small mass region

J. N. Hu, et al.,  Prog. Theo. Exp. Phys., 2020 (2020) 043D01 
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The tidal deformability as a function of neutron mass

The tidal deformability

FIG. 7: The Love number as a function of compactness parameter with different slopes, L =

40, 60, 80, 100, 110.8 MeV, respectively for TM1 parameter set.

radius. The dimensionless tidal deformabilities with different slopes of symmetry energy are

given in Fig. 8 as functions of neutron star mass. The tidal deformability of neutron star

at small mass is very large, since Λ ∝ C−5, where compactness parameter C is very small.

With neutron star mass increasing, it reduces to zero quickly. The tidal deformability at

1.4M" are 496 for L = 40 MeV and 1045 for L = 110.8 MeV. Many analysis works for the

data of GW170817 event pointed Λ1.4 < 800, which corresponds L = 80 MeV in this work.

FIG. 8: The tidal deformability as a function of neutron star mass with different slopes, L =

40, 60, 80, 100, 110.8 MeV, respectively for TM1 parameter set.

13

1.4M⊙ 

800 

J. N. Hu, et al.,  Prog. Theo. Exp. Phys., 2020 (2020) 043D01 
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Temperature effect

Fermi-Dirac distribution

Here M*=M+gσσ is the effective nucleon mass. �fi
k and �fi

k

( �i p n, ) denote, respectively, the occupation probabilities of
nucleon and antinucleon at momentum k, which are given by
the Fermi–Dirac distribution,
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with the kinetic part of the chemical potential νi related to the
chemical potential μi as
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The number density of protons (i= p) or neutrons (i= n) is
calculated by
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Using the results of the TM1e model as input in the TF
calculation, we compute the average free energy density of
nonuniform matter, and compare it with the one of uniform
matter. At a given temperature T, proton fraction Yp, and
baryon mass density ρB, the thermodynamically stable state is
the one having the lowest free energy density. We determine
the stable state and the phase transition between nonuniform
matter and uniform matter by minimizing the free energy
density.

2.2. TF Approximation

At the low temperature and subnuclear density region, heavy
nuclei are formed in order to lower the free energy of the system.
For the description of nonuniform matter, we employ the TF
approximation with a parameterized nucleon distribution, which
was developed by Oyamatsu (1993) and used in our previous
works (Shen et al. 1998b, 2011). The nonuniform matter is
modeled as a mixture of a single species of heavy nuclei, alpha
particles, and free nucleons outside nuclei, while the leptons are
approximated as an ideal relativistic gas separately. The
spherical nuclei are arranged in a body-centered-cubic (BCC)
lattice to minimize the Coulomb lattice energy (Oyamatsu 1993),
while the Wigner–Seitz cell is introduced to simplify the
calculation of free energy. It is likely that nonspherical nuclei,
known as pasta phases, may appear as the density approaches the
phase transition to uniform matter (Avancini et al. 2010; Pais &
Stone 2012; Okamoto et al. 2013; Bao & Shen 2015). The
appearance of pasta phases can smooth the transition to uniform
matter (see, e.g., Furusawa et al. 2013), but the effects on
thermodynamic quantities in the EOS table are rather small. For
simplicity, we consider only spherical configuration in con-
structing the EOS table.

In the Wigner–Seitz cell, a spherical heavy nucleus is located
at the center, while free nucleons and alpha particles exist
outside the nucleus. Each cell is assumed to be charge neutral
and the background electron gas is uniform. The density
distribution of particle i (i= p, n, or α) in the cell is assumed to
have the form
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where r denotes the distance from the center of the cell. Rcell is
the radius of the cell, which is related to the cell volume Vcell

and the lattice constant a by Q� � �V a R N n4 3cell
3

cell
3

B B

with NB and nB being the baryon number per cell and the
average baryon number density, respectively. The baryon mass
density is defined as ρB=munB with mu=931.494MeV
being the atomic mass unit. For nonuniform matter at given
temperature T, proton fraction Yp, and baryon mass density ρB,
the thermodynamically stable state is the one with the lowest
free energy density, f=Fcell/Vcell. The free energy per cell
Fcell is given by

( ) ( )� � � �F E E E TS , 8cell bulk surf Coul cell

where the bulk energy Ebulk and entropy Scell are computed by
performing integrations over the cell. The local energy and
entropy densities can be expressed as the sum of contributions
from nucleons and alpha particles. We use the RMF results of
the TM1e model for the contributions of nucleons, while the
alpha particles are treated as an ideal Boltzmann gas. To
describe the dissolution of alpha particles at high densities, the
excluded-volume correction is taken into account as described
in Shen et al. (2011). For performing numerical integrations of
Ebulk and Scell, we use the tabulated results of the TM1e model
given by Equations (2) and(3) as input in the TF calculation,
and then the corresponding local densities contributed by
nucleons are computed from the input table using a linear
interpolation procedure. The input table is designed to include
871 grid points for the baryon number density nB and 1001 grid
points for the proton fraction Yp, so that the linear interpolation
can be used with good accuracy. As for the contribution of
alpha particles, it is calculated within the ideal-gas approx-
imation, where the alpha-particle binding energy Bα=
28.3MeV is taken into account (Lattimer & Swesty 1991; Shen
et al. 2011). Generally, the number density of alpha particles is
rather small, and therefore, the ideal-gas approximation can
provide a reasonable description for alpha particles.
In Equation (8), Esurf represents the surface energy due to the

inhomogeneity of nucleon distributions. We use the simple
form as

∣ ( ( ) ( ) ) ∣ ( )¨� � �E F n r n r d r, 9n psurf
cell

0
2 3

where the parameter �F 70 MeV fm0
5 is the same as that

adopted in Shen EOS with the original TM1 model, which was
determined in Shen et al. (1998a) by performing the TF
calculation for finite nuclei so as to reproduce the gross
properties of nuclear masses and charge radii, as described in
the appendix of Oyamatsu (1993). The reason why we use the
same value of F0 in the new EOS4 is because the TM1e model
can predict very similar properties of finite nuclei as the
original TM1 model (see Table 2 below), and hence the TF
calculation in the TM1e model with �F 70 MeV fm0

5 is able
to reproduce similar gross properties of nuclear masses and
charge radii. The Coulomb energy per cell ECoul is given by
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The number density of protons or neutrons 

Here M*=M+gσσ is the effective nucleon mass. �fi
k and �fi
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( �i p n, ) denote, respectively, the occupation probabilities of
nucleon and antinucleon at momentum k, which are given by
the Fermi–Dirac distribution,
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Using the results of the TM1e model as input in the TF
calculation, we compute the average free energy density of
nonuniform matter, and compare it with the one of uniform
matter. At a given temperature T, proton fraction Yp, and
baryon mass density ρB, the thermodynamically stable state is
the one having the lowest free energy density. We determine
the stable state and the phase transition between nonuniform
matter and uniform matter by minimizing the free energy
density.

2.2. TF Approximation

At the low temperature and subnuclear density region, heavy
nuclei are formed in order to lower the free energy of the system.
For the description of nonuniform matter, we employ the TF
approximation with a parameterized nucleon distribution, which
was developed by Oyamatsu (1993) and used in our previous
works (Shen et al. 1998b, 2011). The nonuniform matter is
modeled as a mixture of a single species of heavy nuclei, alpha
particles, and free nucleons outside nuclei, while the leptons are
approximated as an ideal relativistic gas separately. The
spherical nuclei are arranged in a body-centered-cubic (BCC)
lattice to minimize the Coulomb lattice energy (Oyamatsu 1993),
while the Wigner–Seitz cell is introduced to simplify the
calculation of free energy. It is likely that nonspherical nuclei,
known as pasta phases, may appear as the density approaches the
phase transition to uniform matter (Avancini et al. 2010; Pais &
Stone 2012; Okamoto et al. 2013; Bao & Shen 2015). The
appearance of pasta phases can smooth the transition to uniform
matter (see, e.g., Furusawa et al. 2013), but the effects on
thermodynamic quantities in the EOS table are rather small. For
simplicity, we consider only spherical configuration in con-
structing the EOS table.

In the Wigner–Seitz cell, a spherical heavy nucleus is located
at the center, while free nucleons and alpha particles exist
outside the nucleus. Each cell is assumed to be charge neutral
and the background electron gas is uniform. The density
distribution of particle i (i= p, n, or α) in the cell is assumed to
have the form
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where r denotes the distance from the center of the cell. Rcell is
the radius of the cell, which is related to the cell volume Vcell

and the lattice constant a by Q� � �V a R N n4 3cell
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with NB and nB being the baryon number per cell and the
average baryon number density, respectively. The baryon mass
density is defined as ρB=munB with mu=931.494MeV
being the atomic mass unit. For nonuniform matter at given
temperature T, proton fraction Yp, and baryon mass density ρB,
the thermodynamically stable state is the one with the lowest
free energy density, f=Fcell/Vcell. The free energy per cell
Fcell is given by
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where the bulk energy Ebulk and entropy Scell are computed by
performing integrations over the cell. The local energy and
entropy densities can be expressed as the sum of contributions
from nucleons and alpha particles. We use the RMF results of
the TM1e model for the contributions of nucleons, while the
alpha particles are treated as an ideal Boltzmann gas. To
describe the dissolution of alpha particles at high densities, the
excluded-volume correction is taken into account as described
in Shen et al. (2011). For performing numerical integrations of
Ebulk and Scell, we use the tabulated results of the TM1e model
given by Equations (2) and(3) as input in the TF calculation,
and then the corresponding local densities contributed by
nucleons are computed from the input table using a linear
interpolation procedure. The input table is designed to include
871 grid points for the baryon number density nB and 1001 grid
points for the proton fraction Yp, so that the linear interpolation
can be used with good accuracy. As for the contribution of
alpha particles, it is calculated within the ideal-gas approx-
imation, where the alpha-particle binding energy Bα=
28.3MeV is taken into account (Lattimer & Swesty 1991; Shen
et al. 2011). Generally, the number density of alpha particles is
rather small, and therefore, the ideal-gas approximation can
provide a reasonable description for alpha particles.
In Equation (8), Esurf represents the surface energy due to the

inhomogeneity of nucleon distributions. We use the simple
form as
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where the parameter �F 70 MeV fm0
5 is the same as that

adopted in Shen EOS with the original TM1 model, which was
determined in Shen et al. (1998a) by performing the TF
calculation for finite nuclei so as to reproduce the gross
properties of nuclear masses and charge radii, as described in
the appendix of Oyamatsu (1993). The reason why we use the
same value of F0 in the new EOS4 is because the TM1e model
can predict very similar properties of finite nuclei as the
original TM1 model (see Table 2 below), and hence the TF
calculation in the TM1e model with �F 70 MeV fm0

5 is able
to reproduce similar gross properties of nuclear masses and
charge radii. The Coulomb energy per cell ECoul is given by
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The energy density 

where Wμν and Raμν denote the antisymmetric field tensors for
ωμ and ρaμ, respectively.3 Under the mean-field approximation,
the meson fields are treated as classical fields and the field
operators are replaced by their expectation values. In a static
uniform system, the nonzero components are T T� � §, X X� � §0 ,
and S S� � §30 . We derive the equations of motion for mesons and
the Dirac equation for nucleons, which are coupled with each
other and could be solved self-consistently.

Compared with the original TM1 model adopted in Shen et al.
(2011), an additional ω–ρ coupling term is introduced in the
Lagrangian density (1), which plays a crucial role in determining
the density dependence of the symmetry energy (Horowitz &
Piekarewicz 2001; Cavagnoli et al. 2011; Providência &
Rabhi 2013; Bao et al. 2014a; Bao & Shen 2014b). By adjusting
the coupling constants, gρ and Λv, it is possible to control the
behavior of symmetry energy and its density dependence. In the
TM1e model, the slope parameter L=40MeV and the symmetry
energy Esym=31.38MeV at saturation density are obtained,
which fall well within the constraints from various observations
(Oertel et al. 2017). The corresponding values in the original TM1
model are L=110.8MeV and Esym=36.89MeV, which are
rather large and disfavored by recent astrophysical observations. In
Table 1, we present the coupling constants of the TM1e and TM1
models for completeness. It is shown that only gρ and Λv related
to isovector parts are different, while all other parameters remain
the same. It is noteworthy that the TM1e model provides the same
isoscalar saturation properties and similar binding energies of
finite nuclei as the original TM1 model, whereas the density
dependence of symmetry energy is very different. In Figure 1, we

plot the energy per baryon E/A of symmetric nuclear matter and
neutron matter as a function of the baryon number density nB. It is
shown that the behavior of symmetric nuclear matter is exactly the
same between the TM1e and TM1 models, while significant
differences are observed in neutron matter. This is related to
different density dependence of symmetry energy between these
two models, which is displayed in Figure 2. One can see that the
symmetry energy Esym in the TM1e model is slightly larger at low
densities and much smaller at high densities than that in the
original TM1 model. It is interesting and convenient to explore the
influence of symmetry energy and its density dependence on the
properties of the EOS for supernova simulations by using these
two models.
For the TF calculations of nonuniform matter, we need to

input the energy density and entropy density of uniform nuclear
matter, which are given in the TM1e model by
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Table 1
Coupling Constants of the TM1e and TM1 Models

Model gσ gω gρ g2 (fm−1) g3 c3 -v

TM1e 10.0289 12.6139 13.9714 −7.2325 0.6183 71.3075 0.0429
TM1 10.0289 12.6139 9.2644 −7.2325 0.6183 71.3075 0.0000

Figure 1. Energy per baryon E/A of symmetric nuclear matter and neutron matter
as a function of the baryon number density nB in the TM1e and TM1 models.

Figure 2. Symmetry energy Esym as a function of the baryon number density
nB in the TM1e and TM1 models.

3 Note that the coupling constant for isovector–vector meson, gρ, is different
by a factor of 2 from the one in Shen et al. (2011). We follow here the
convention of Bao & Shen (2014b).
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New DDRMF parameterizations
4 A. Taninah et al. / Physics Letters B 800 (2020) 135065

Fig. 1. Two-dimensional projections of the distribution of the functional variations in the 8-dimensional parameter hyperspace of the DDME-X functional. The colors indicate 
the !χ2 value of the χ2

norm(p) of the functional variation where the latter is expressed as χ2
norm(p) = χ2

norm(p0) +!χ2. A color map is used for the functional variations with 
maximum value of !χ2 equal to !χ2

max = 3.0; there are 200 such variations. The optimal functional is located at the intersection of the lines f (pk) = 1.0 and f (p j) = 1.0. 
The solid lines in panels (e) and (f) display the parametric correlations between the respective parameters.

Fig. 2. The same as Fig. 1 but for the functional PC-X.

isovector channel, but the number of parameters in the isoscalar 
channel is reduced by parametric correlations from 3 to 1. In the 
PC-models we have also one parameter in the isovector channel, 
but the number of parameters in the isoscalar channel is reduced 
from 4 to 1. Finally we have in all cases one parameter in the 
isoscalar channel and one parameter in the isovector channel.

This result can be understood qualitatively also on a micro-
scopic basis. Starting from the bare nucleon-nucleon interaction 
adjusted to the nucleon-nucleon scattering data [27] and using 
relativistic Brueckner-Hartree-Fock theory in symmetric and asym-

metric nuclear matter at various densities one is able to derive 
the relativistic self-energies of nucleons in nuclear matter without 
any phenomenological parameters [28–32]. By adjusting the self-
energies obtained from CDFT in nuclear matter at the same density 
one is able to derive the density dependence of the coupling con-
stants in a microscopic way [30]. However, in the Brueckner cal-
culations, a number of approximations have been used and there-
fore this mapping is not unique. At present, the results obtained 
from such calculations in finite nuclei are rather different and, so 
far, their quality is far from that obtained with phenomenologi-

A.Taninah, et al. Phys. Lett. B 800,135065(2020)

DD-MEX DD-LZ1 

σ ω

FHQWHU  WR  WKH  VXUIDFH,  DQG  PHDQZKLOH  QXFOHRQ  GHQVLW\
FKDQJHV  IURP  QHDUO\  VDWXUDWHG  WR  ]HUR  YDOXHV.  7KXV,  D
FRQVLVWHQW UHODWLRQ  LV  UHYHDOHG  EHWZHHQ  WKH  366   UHVWRUD-
WLRQ DQG LQ-PHGLXP EDODQFH RI QXFOHDU DWWUDFWLRQ DQG UH-
SXOVLRQ,  ZKLFK  DUH  FDUULHG  PDLQO\  LQ  WKH  -6  DQG  -9
FRXSOLQJV >61@.

gσ gω
gσ gω

ρ
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CRPSDUHG  WR  DD-ME2,  FLJ.  5  (D)  VKRZV  WKDW  WKH
GHQVLW\  GHSHQGHQFH  RI    DQG    LV  QRWDEO\  UHGXFHG  LQ
DD-L=1.  NHYHUWKHOHVV,  WKH    DQG    LQ  DD-L=1  VWLOO
VKRZ UHODWLYHO\ VWURQJHU GHQVLW\ GHSHQGHQFLHV WKDQ WKRVH
LQ  3KA1,  ZKLFK  LV  QHFHVVDU\  WR  SURYLGH  DQ  DSSURSULDWH
PRGHOLQJ RI WKH QXFOHDU LQ-PHGLXP HIIHFWV. IQ 3KA1, WKH
-7 FRXSOLQJ SUHVHQWV VWURQJ DWWUDFWLYH SRWHQWLDO >61@, DQG
WKXV  WKH  VWURQJ  GHQVLW\  GHSHQGHQFH  RI  WKH  FRXSOLQJ
VWUHQJWK   FDUULHV D IDLUO\ ODUJH DPRXQW RI WKH QXFOHDU LQ-
PHGLXP HIIHFWV, DFFRUGLQJ WR   LQ FLJ. 5(F). IQ FRQ-
WUDVW, DD-L=1 SUHVHQWV RQO\ VOLJKWO\ VWURQJHU GHQVLW\ GH-
SHQGHQFH  RQ  WKH  FRXSOLQJ  VWUHQJWK    WKDQ  DD-ME2,  DV
VHHQ LQ FLJ. 5(E). 7KHUHIRUH, WKH UHVLGXDO QXFOHDU LQ-PHGL-
XP HIIHFWV LQ WKH LVRVFDODU FKDQQHOV,  LQ IDFW HQKDQFHG E\
WKH  XQSDUDOOHO  GHQVLW\-GHSHQGHQW    DQG    LQ  DD-L=1,
DUH  DOVR  PHDQLQJIXO  LQ  SURPLVLQJ  DSSURSULDWH  VLPXODWLRQ
RI WKH QXFOHDU LQ-PHGLXP HIIHFWV.

gσ gω
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Table 2 Parameters for the density dependence of couplings. The coefficients d j for j = ω, σ are given by d j = 1/
√

3c j , except for dω =
3758.39866319 in case of DDSTD

Parametrisation n(v)ref n(s)ref bω cω bσ cσ aρ = aδ

DDV 0.151117 0.14218170 0.03911422 0.07239939 0.21286844 0.30798197 0.35265899

DDVT 0.153623 0.14636172 0.04459850 0.06721759 0.19210314 0.27773566 0.54870200

DDVTD 0.153636 0.14637920 0.02640016 0.04233010 0.19171263 0.27376859 0.55795902

DDS 0.151186 0.14218154 0.03643847 0.08348558 0.13985555 0.23568086 0.34219700

DDST 0.153923 0.14673361 −3.786315 · 10−5 1.611143 · 10−5 0.13972293 0.20737662 0.56369799

DDSTD 0.153999 0.14683193 −7.009164 · 10−8 0.00000000 0.14036291 0.20810260 0.58325702

Some obvious correlations of individual quantities with
the type of EDF are found. The introduction of tensor cou-
plings (models DDVT, DDST) leads to reductions of the σ

meson mass and of the ω and ρ coupling strengths as com-
pared to the standard models (DDV, DDS). This feature is
related to the increased Dirac effective mass, see below. The
ratio Γσ /mσ , which is the relevant quantity for calculations
of nuclear matter, changes less strongly between the models.
The ρ meson tensor coupling is substantially larger than the
ω meson tensor coupling as observed, e.g., already in [2,27].
Also an increase of the reference densities, n(v)ref or n(s)ref , is
seen. The further introduction of the δ meson (DDVTD,
DDSTD) only leads to small changes of the parameters, with
the exception of the ρ meson coupling that becomes larger.
For models with scalar density dependence and tensor cou-
pling, there are two unique cases (DDST, DDSTD) where
the parameters in the function (62) become very small (cω)
or even negative (bω), see Table 2. The latter case would
cause the coupling to vanish and to become negative at very
high densities. However, this is not relevant for calculations
of nuclear structure or nuclear matter at reasonable baryon
densities since they are much lower than the zero-crossing
densities.

The actual density dependence of the couplings is depicted
in Figs. 1 and 2 for the cases of a vector or scalar density
dependence, respectively. Only the ω, σ and ρ couplings
are shown because the δ coupling has the same shape as the
ρ coupling if it is nonzero. A typical decrease of the cou-
plings with increasing density is observed. All couplings
behave rather similarly. The ρ meson coupling decreases
more strongly than the ω and σ couplings. It vanishes at
infinitely high density because the exponential form (63) was
chosen. The situation is different for the isoscalar mesons.
They approach a nonzero finite value in this limit. The vari-
ations between the parametrisations are less strong for the ρ

meson as compared to the isoscalar mesons.

4.2 Uncertainties of observables

The introduction of tensor couplings in the energy density
functional also affects the uncertainties of nuclear observ-

(a)

(b)

(c)

Fig. 1 Coupling functions of the ω (a), σ (b), and ρ (c) meson for
models with a vector density dependence

ables that enter in the calculation of the χ2 function (66).
They are given in Table 3 and shown in Fig. 3. Most strik-
ing is the reduction of the uncertainty in the binding ener-
gies (upper panel) and in the diffraction radii (lower panel)
when the tensor couplings are considered. In contrast, the
charge radii and skin thicknesses are only described slightly
worse than in the models without tensor interaction. Taking
the δ meson into account does not make a big difference.
The uncertainties of the spin-orbit splittings are almost the
same for all models. The observed trends are very similar for
models with a vector or a scalar density dependence of the
couplings. Overall, terms with tensor couplings seem to be a
valuable contribution in the EDF to improve the description
of nuclear observables.
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Figure 1. The coupling constants of ω, σ, and ρ mesons as functions of vector density in various DDRMF models and several
nonlinear RMF models.

in nuclear matter. Their coupling constants of σ and ω mesons in panel (a) and panel (b) are dramatically smaller than
other sets. Furthermore, the coupling constants from several typical nonlinear RMF models, NL3 (Lalazissis et al.
1997), TM1 (Sugahara & Toki 1994), IUFSU (Horowitz & Piekarewicz 2001), and BigApple (Fattoyev et al. 2020)
are also shown to compare their differences with those in DDRMF model. At low density region, the coupling constants
in DDRMF models are usually stronger than those in nonlinear RMF modes, while weaker at higher density.
With these DDRMF parameter sets, the saturation properties of nuclear matter can be calculated, such as the

saturation density, binding energy, incompressibility, symmetry energy, the slope of symmetry energy, and the effective
nucleon mass. In Table 2, these properties calculated by various DDRMF models are listed, whose uncertainties of
different parameter sets are very small in saturation density, binding energy, incompressibility, and symmetry energy.
The slopes of symmetry energy from different models, L are around 40 − 70 MeV, which also satisfy the recent
constraints, L = 59.57± 10.06 MeV (Zhang et al. 2020). On the other hand, the effective nucleon masses in DDVT
and DDVTD are relatively larger, since their scalar coupling strengths are much smaller comparing to other sets.

Table 2. Nuclear matter properties at saturation density generated by present DDRMF parameterizations.

DD-LZ1 DD2 DD-ME1 DD-ME2 DD-MEX DDV DDVT DDVTD

ρB0[fm
−3] 0.1585 0.149 0.152 0.152 0.1518 0.1511 0.1536 0.1536

E/A[MeV] -16.126 -16.916 -16.668 -16.233 -16.14 -16.097 -16.924 -16.915

K0[MeV] 231.237 241.990 243.881 251.306 267.059 239.499 239.999 239.914

Esym[MeV] 32.016 31.635 33.060 32.31 32.269 33.589 31.558 31.817

L[MeV] 42.467 54.933 55.428 51.265 49.692 69.646 42.348 42.583

M∗
n/M 0.558 0.563 0.578 0.572 0.556 0.586 0.667 0.667

M∗
p /M 0.558 0.562 0.578 0.572 0.556 0.585 0.666 0.666

The binding energies per nucleon for symmetric nuclear matter in panel (a) of Fig .2 and pure neutron matter in panel
(b) of Fig .2 as functions of vector density are plotted with the present DDRMF parameterizations. These equations
of state (EOSs) of nuclear matter below 0.2 fm−3 are almost identical since all the parameters were determined by
properties of finite nuclei, whose central density is around nuclear saturation density ρB0 ∼ 0.15 fm−3. Their differences
increase from 0.30 fm−3. In symmetric nuclear matter, they are separated into the softer group with DDV, DDVT,
and DDVTD, and the stiffer group with DD2, DD-ME1, DD-ME2, DD-MEX, and DD-LZ1. The scalar and vector
coupling strengths in softer group sets are obviously weaker than those in stiffer group sets. The binding energy of
pure neutron matter from DDV is larger than the ones from DDVT and DDVTD. The DDV set has the largest slope of
symmetry energy in the present DDRMF parameterizations. This slope will determine the density dependent behaviors
of symmetry energy and the binding energy of pure neutron matter, due to E/A(β = 1) ≈ E/A(β = 0) + Esym at a
fixed density.
In general, it is very difficult to measure properties of nuclear matter above twice nuclear saturation density from

finite nuclei. Recently, the experiments about heavy-ion collisions provide us some useful information to constrain the
EOS of nuclear matter at high density. In Fig. 3, the pressures in symmetric nuclear matter as functions of density from
various DDRMF models are shown and compared to the constraints from heavy-ion collisions at 2−4ρB0 by Danielewicz
et al. (Danielewicz et al. 2002). We can find that the EOSs from the softer group sets are completely consistent with
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where F (r) and Q(r) are functions related to the pressure and energy density

F (r) =

[

1−
2M(r)

r

]−1
{

1− 4πr2[E(r) − P (r)]
}

, (27)

r2Q(r) =

{

4πr2
[

5E(r) + 9P (r) +
E(r) + P (r)

∂P
∂E

(r)

]

− 6

}

×
[

1−
2M(r)

r

]−1

−
[

2M(r)

r
+ 2× 4πr2P (r)

]2

×
[

1−
2M(r)

r

]−2

.

The second Love number corresponds to the initial condition y(0) = 2. It is also related to the speed of sound in
compact matter, cs

c2s =
∂P (ε)

∂E
. (28)

3. THE RESULTS AND DISCUSSIONS

Firstly, masses of nucleons and mesons, coupling constants between nucleon and mesons, and saturation densities of
symmetric nuclear matter, ρB0 in DD2 (Typel et al 2010), DD-ME1 (Nikšić et al. 2002), DD-ME2 (Lalazissis et al.
2005), DDME-X (Taninah et al. 2020), DDV, DDVT, DDVTD (Typel & Terrero 2020), and DD-LZ1 (Wei et al.
2020) sets are all listed in Table 1,

Table 1. Masses of nucleons and mesons, meson coupling constants, and the nuclear saturation densities in various DDRMF
models.

DD-LZ1 DD2 DD-ME1 DD-ME2 DD-MEX DDV DDVT DDVTD

mn[MeV] 938.900000 mn 939.56536 939.0000 939.0000 939.0000 939.565413 939.565413 939.565413

mp[MeV] 938.900000 mp 938.27203 939.0000 939.0000 939.0000 938.272081 938.272081 938.272081

mσ[MeV] 538.619216 mσ 546.212459 549.5255 550.1238 547.3327 537.600098 502.598602 502.619843

mω[MeV] 783.0000 mω 783.0000 783.0000 783.0000 783.0000 783.0000 783.0000 783.0000

mρ[MeV] 769.0000 mρ 763.0000 763.0000 763.0000 763.0000 763.0000 763.0000 763.0000

mδ[MeV] — mδ — — — — — — 980.0000

Γσ(0) 12.001429 Γσ(ρB0) 10.686681 10.4434 10.5396 10.7067 10.136960 8.382863 8.379269

Γω(0) 14.292525 Γω(ρB0) 13.342362 12.8939 13.0189 13.3388 12.770450 10.987106 10.980433

Γρ(0) 15.150934 Γρ(ρB0) 7.25388 7.6106 7.3672 7.2380 7.84833 7.697112 8.06038

Γδ(0) — Γδ(ρB0) — — — — — — 0.8487420

ρB0[fm
−3] 0.158100 ρB0 0.149 0.152 0.152 0.153 0.1511 0.1536 0.1536

aσ 1.062748 aσ 1.357630 1.3854 1.3881 1.3970 1.20993 1.20397 1.19643

bσ 1.763627 bσ 0.634442 0.9781 1.0943 1.3350 0.21286844 0.19210314 0.19171263

cσ 2.308928 cσ 1.005358 1.5342 1.7057 2.0671 0.30798197 0.27773566 0.27376859

dσ 0.379957 dσ 0.575810 0.4661 0.4421 0.4016 1.04034342 1.09552817 1.10343705

aω 1.059181 aω 1.369718 1.3879 1.3892 1.3936 1.23746 1.16084 1.16693

bω 0.418273 bω 0.496475 0.8525 0.9240 1.0191 0.03911422 0.04459850 0.02640016

cω 0.538663 cω 0.817753 1.3566 1.4620 1.6060 0.07239939 0.06721759 0.04233010

dω 0.786649 dω 0.638452 0.4957 0.4775 0.4556 2.14571442 2.22688558 2.80617483

aρ 0.776095 aρ 0.518903 0.5008 0.5647 0.6202 0.35265899 0.54870200 0.55795902

aδ — aδ — — — — — — 0.55795902

The mass of σ meson is fitted as a free parameter in DDRMF model. The coefficients of meson coupling constants, Γi

in DD-LZ1 are the values at zero density, while other parameter sets adopted the values at nuclear saturation densities.
The magnitudes of Γσ(ρB0), Γω(ρB0) and Γρ(ρB0) in DD2, DDME-1, DD-ME2, DD-MEX, DDV are consistent with
each other. The tensor couplings between vector mesons and nucleon were considered in DDVT and DDVTD, where
Γσ(ρB0) and Γω(ρB0) have significant differences comparing to other parameter sets. In addition, the δ meson is
included in DDVTD set.
To show the density-dependent behaviors of these coupling constants more clearly, they are plotted as functions of

the vector density in Fig. 1. It can be found that all of these coupling constants decrease when the nuclear density
becomes larger due to the nuclear medium effect. For the ρ meson coupling constants in panel (c), all parameter sets
have very similar density-dependent behaviors in the whole density region. In DDVT and DDVTD, the tensor coupling
constants play obvious roles in finite nuclei due to their derivative forms, however, they do not provide any contribution

DD2
DD-ME1
DD-ME2
DD-MEX
DD-LZ1
DDV
DDVT
DDVTD


