Radiation Efficiency and Pair Multiplicity of MeV Pulsars

Jumpei Takata Huazhong University of Science and Technology Collaboration with H.H. Wang, C.C.Lin and S. Kisaka 2024ApJ, 965, 126

2024, May 11-15 @ Dream field

Outline

1. Motivation.

2. New X-ray analysis for eight MeV pulsars.

3. Estimation of the multiplicity of MeV pulsar's emission.

4. Summary.

1. Motivation

vF_v[ergs/cm²/sec]

- Pair-creation process in the magnetosphere.
 (i) Magnetic pair-creation process.
 (ii) Photon-photon pair-creation process.
- Multiplicity (κ) = Pair number/ Goldreich-Julian value.
 How many pairs are created by one electron accelerated

in the magnetosphere

- Pair-creation cascade on **near the stellar surface**. $\kappa_{max} \sim \frac{\text{Energy of one accelerated primary } (\sim 10^{13} \text{eV})}{\text{Minimum photon energy of process } (1 \sim \text{MeV})} \sim 10^7$
- Has the high-energy emission from $\kappa = 10^{6-7}$ pairs in "the magnetosphere" been observed ?

1, Motivation:

□ GeV/TeV emission from magnetosphere

- > 300 *Fermi*-LAT GeV pulsars.
- 2 TeV pulsars (Crab and Vela).
- Emission from the outer magnetosphere (~light cylinder).
- Two radiation models.
- (1) Canonical gap model
 - (i) GeV emission:

- Curvature radiation of primary particles (energy ~ gap electric potential): $n_p \sim n_{GJ} (\kappa \sim 1)$.

- (ii) TeV emission (inverse-Compton process):
 - Crab: Secondary pair's ($\kappa \sim 10^3$).
 - Vela: Primary ($\kappa \sim 1$).

1, Motivation:

GeV/TeV emission from magnetosphere

(2) Current sheet model

- Accelerated pair energy density ~ magnetic energy density.

$$\left(\gamma\kappa n_{GJ}m_ec^2\sim \frac{B^2}{8\pi}\right)$$

- Synchrotron radiation.
- GeV emission: $\kappa \sim 10^3$
- TeV emission: *κ*~**100**
- Where do the high-energy emissions from new born pairs $(\kappa = 10^{6-7})$?

1, Motivation:

MeV pulsar

Eight young pulsars (isolate).
Represent source is PSR B1509-58

(i) No GeV detection.

(ii) SED peak at 1-10MeV.

\mathbf{PSR}	P_s (ms)	$B_{s} \ (10^{12} { m G})$	$L_{sd} \ (10^{36} {\rm erg \ s^{-1}})$	$d~({ m kpc})$
B1509-58	152	15	17	4.4
J1617-5055	69.4	3.1	16	4.7
J1811-1925	64.7	1.7	6.4	5.0
J1813-1749	44.7	2.4	56	6.1
J1838-0655	70.5	1.9	5.5	6.6
J1846-0258	327	49	8.1	5.8
J1849-0001	38.5	0.75	9.8	7.0^a
J1930+1852	137	10	12	7.0

(iii) Non-thermal X-ray.

- Thermal emission may be buried under the non-thermal component.

- What is the emission process?
 - Radiation efficiency.
 - Required multiplicity.

PSR B1509-58

2. New X-ray data analysis

- XMM-Newton, NICER, NuSTAR and HXMT
- Eight MeV PSRs share similar spectra and pulse profiles.
- (1) **Broken power law** spectrum (pulsed component)

-Break energy: $E_{break} \sim 5 - 10$ keV.

- Photon index: $\Gamma_1 \sim 1$ for $E < E_{break}$ and $\Gamma_1 \sim 1.5$ for $E > E_{break}$ \rightarrow Synchrotron radiation.

New X-ray data analysis

(2) Singla broad peak of X-ray emission.

- Emission region may be different from that of GeV pulsars.

2. New X-ray data analysis

Radiation efficiency of MeV pulsar

- Efficiency (η) = Luminosity / Spin down power
- *Isotropic* radiation efficiency in 0.3-150 keV bands is $\eta \sim 10^{-2} 10^{-1}$ (most pulsars has no data in 500keV-10 MeV bands).
- The efficiency is on the track of the "GeV" efficiency of Fermi-*LAT* pulsar.
- Two possible interpretations of $\eta_{MeVPSR} \sim \eta_{GeVPSR}$.
- (i) Emission from the secondary pairs, into which most of primary GeV emission is converted.
- (ii) The emission region is the same.

3. Multiplicity

Estimation

(i) Secondary emission inside light cylinder:

Assumption

- (a) Distance to emission region from the star.
- (b) All pairs are injected with a Lorentz factor γ_{max} .
- (c) Synchrotron radiation.
- (d) *E_{break}* corresponds to the minimum Lorentz factor of the pairs.
 (i) Dynamical time scale = Synchrotron cooling time scale, or
 (ii) The lowest Landau level.

• Model parameters:

- (1) Efficiency: $\eta = 10^{-3} 10^{-2}$.
- (2) Spectral peak: $E_{peak} \sim 1 \text{MeV}$ (fixed).
- (3) Spectral break energy: $E_{break} \sim 5 \text{keV}$ (fixed).

(4) Magnetic field (or radial distance) : $B(r) = \left(\frac{R_{NS}}{r}\right)^3 B_{NS}$.

• Estimated parameters:

- (1) Multiplicity (κ).
- (2) Initial Lorentz factor of pair (γ_{max}).
- (3) Final Lorentz factor (γ_{min}).

(4) Pitch angle (α).

(i) Secondary emission inside light cylinder (cont'd)

- If the emission region $\frac{r}{R_{NS}} < 80$, $\kappa \sim 10^{6-7}$ is expected.
 - It is similar to the theoretical prediction of pair cascade near the stellar surface.
- For outer magnetosphere, the pairs with an injected energy of $\gamma_{max}m_ec^2 \sim 1$ TeV is required. - It may be difficult to create such a high-energy pair with $\kappa \sim 10^{4-5}$.

3. Multiplicity

(i) Secondary emission inside light cylinder (cont'd)

Interpretation

• Efficiency of MeV pulsar emission ~ Efficiency of GeV pulsar emission.

3. Multiplicity

Estimation

(ii) Current sheet model

• Magnetic reconnection in the current sheet (Lyubarskii 1996; Chernoglazov et al. 2023).

(i) Accelerated pair energy density ~ Magnetic energy density.

$$(\kappa n_{GJ}/\Gamma_{bulk}) \times \gamma'_p m_e c^2 \sim \frac{B_{lc}^2}{8\pi}$$

(ii) Peak energy

$$E_{peak} \sim \Gamma_{bulk} \times \left(\frac{3}{2}\right)^{\frac{3}{2}} \gamma'_{p}^{2} \frac{heB_{lc}}{2\pi m_{e}c} \sim 1 MeV$$

$$\Rightarrow \kappa \sim 4 \times 10^{6} \text{ for } \Gamma_{bulk} \sim 10$$

- Most of pairs created at the polar cap region is injected into the current sheets.

→ $\kappa \sim 10^4$ for GeV pulsar.

Emission of the MeV pulsars is likely produced by the pairs with $\kappa \sim 10^{6-7}$.

Resonant Cyclotron Scattering feature?

- Indication of 40keV absorption feature in the spectrum.
 New NuSTAR observation has been approved.
- If this would be true, the MeV pulsar emission likely originates near the stellar surface.
- Optical depth of RCS.

$$\tau_{res} \sim \frac{16}{3} \frac{\pi^2 e^2}{m_e c} \frac{(\kappa n_{GJ}) \Delta r_{res}}{\omega_{cyc}}$$
$$\sim 80 \left(\frac{\kappa}{10^6}\right) \left(\frac{B}{10^{12} G}\right) \left(\frac{E_{cyc}}{50 keV}\right)^{-1} \left(\frac{\Delta r_{res}}{10^4 cm}\right)$$

• How is the population of the *non-relativistic* pairs created ? (i) Polar cap accelerator cascade: $\gamma \sim$ several for $\kappa \sim 10^{6-7}$.

(ii) The inward GeV emission creates the pairs with a large pitch angle, $\sin \alpha = \frac{\gamma_{\perp}}{\gamma_{||}} \sim 1$.

(Takata et al. 2014)

Summary

 \Box Pulsar wind nebulae indicates $\kappa \sim 10^{6-7}$.

□ Missing high-energy emission from the pars.

 \Box MeV pulsar's emission from the pairs with $\kappa \sim 10^{6-7}$.

□ Resonant Cyclotron Scattering feature ?