ANDAL ANDAL ANDAL ANDAL AND AL AND AND AND AND ALLARDAL AND AL ANDAL AND AL AND AL AND AL AND AL AND AL AND AL

Puzzles in density regions from nuclear to quark matter

ALAR ALARA ALARA

Kenji Fukushima The University of Tokyo

— Dialoque at the Dream Field 2024 —

QCD Phase Diagram

Fukushima-Hatsuda (2010); see also 50 Years of QCD Chap.7 (2023)

QCD Phase Diagram

Temperature 50 K 100 K 150 K 200 K 250 K 300 K 350 K 400 K 450 K 500 K 550 K 600 K 650 K 700 K 750 K 10 Mbar 1 TPe 100 GPa 1 Mbar 10 GPa* 100 kbar 1 GPar 10 kbar Critical point LOO MPat 1 kbar ressur Solid Liquid 647 K, 22.064 MPa 10 MPa 100 bar 1 MPa⁺ 10 bar 100 kPa 1 bar Freezing point at 1 atm Boiling point at 1 atm 273.15 K, 101.325 kPa 373.15 K, 101.325 kPa 10 kPa 100 mbar 1 kPa 10 mbar Solid/Liquid/Gas triple point 273.16 K, 611.657 Pa 100 Par 1 mbar Gas 10 Par 100 µbar Wikipedia 1 P 10 µba -250 °C -200 °C -150 °C -100 °C -50 °C 0°C 50°C 100°C 150°C 200°C 250°C 300°C 350°C 400°C 450°C

Phyics simiar to "water phase diagram" but more complicated...

QCD Phase Diagram

These are all gaseous states and physical d.o.f are different!

QCD Phase Diagram: Prototype '86

PHASE DIAGRAM OF NUCLEAR MATTER

Gordon Baym (1986)

May 12, 2024 @ Guiyang, China

Phase Transition at High Energies Asymptotic Freedom in QCD

$$\alpha_s(Q^2) = \frac{1}{\beta_0 \ln(Q^2 / \Lambda_{\rm QCD}^2)}$$

The theory is perturbative if the exchanged momenta are larger than $\Lambda_{\rm OCD}$.

Empirically
$$\Lambda_{\rm QCD} \sim 200 {\rm MeV}$$
.

Nuclear physics scale is characterized by Λ_{OCD} only.

Phase Transition at High Energies Deconfinement Transition

High-T: Old Handwaving View **Definition of "deconfinement" in old days Pion Gas + Bag Pressure** $p_{\text{hadron}}(T) = \frac{3\pi^2}{00}T^4 + B$ Quark-Gluon Plasma $p_{pert}(T) = \frac{(16+21)\pi^2}{00}T^4$ $T_c = \left[\frac{90}{(37-3)\pi^2}B\right]^{1/4} \sim 160 \text{ MeV}$

May 12, 2024 @ Guiyang, China

High-T: QCD First-Principles

May 12, 2024 @ Guiyang, China

High-T: Interpretation

Crossover = Duality Point

Rising *p* from small *T* is understood by a free gas of (thousands of) mesons (Hadron Resonance Gas).

High-T: Interpretation

Called "Crossover" = Duality Point

Interacting hadronic gas ~ Non-perturbative gas of quarks / gluons

May 12, 2024 @ Guiyang, China

High-T: Lessons

ALARAN ALARAN

* Relativistic Heavy-Ion Collisions

Quark-gluon plasma confirmed experimentally Inconsistency / consistency with hadronic gas / pQCD

* Lattice QCD First-Principles Simulations

Energy / entropy density approaching the SB limit Approximate order parameters show phase transitions pQCD calculations reproducing LQCD around $\sim 2T_c$

* Effective Models

Chiral quark models with gluons working well Even AdS/CFT models good with phenomenology

High-µ_B: Difficulties

* Relativistic Heavy-Ion Collisions

Temperature too high Isospin / strangeness contents very different

* Lattice QCD First-Principles Simulations Sign problem extremely serious for $T < (2-3) \mu_B$ pQCD convergence slow (resummation necessary)

* Effective Models

Order parameter to distinguish nuclear matter and quark matter DOES NOT EXIT !

Remember the high-*T* **arguments:**

Weak Coupling

This works because both gluons and quarks carry typical momenta of order $p \sim T$.

However, high-density implies quarks carrying $p \sim T$ but gluons can carry $p \ll T$.

Asymptotic freedom not necessarily realized?

Screeningvs.ConfinementCollins-Perry (1975)McLerran-Pisarski (2008)

Debye screened by $m_D^2 \sim g^2 \mu^2$

 $\mathbb{I}_{g}^{\mathbb{O}}$

Enhanced by the number of gluons >> quarks

Confinement should persist as long as $\Pi_g > \Pi_q$

Quarkyonic Matter

Quark matter keeps confinement (see the previous page). Baryonic matter has the nature of deconfinement.

Baryon interaction scales with the number of quarks — quark matter?

Nuclear Matter

≃ Quark-like Baryonic Matter≃ Quark Matter

ARDAL ARDA

Transition to quark matter ~ Quantum percolation

NN, NNN, NNNN, all many-body interactions become the same order in the color-number scaling around $\sim 2n_0$

Fukushima-Kojo-Weise (2020)

Cold and Dense Matter

They can be smoothly connected: Schaefer-Wilczek (1999)

Cold and Dense Matter Schematic picture of quark-hadron continuity

These two states cannot be distinguished. (Color is not a physical observable.)

May 12, 2024 @ Guiyang, China

Cold and Dense Matter

HERA, HERA

$$V(M) = aM^2 + bM^4 + cM^6 + \cdots$$

Chiral Anomaly induces:

 $\bar{q}q\bar{q}q\bar{q}q$ Kobayashi-Maskawa-'t Hooft int. $\langle qq \rangle \langle \bar{q}\bar{q} \rangle \langle \bar{q}q \rangle \sim |\Delta|^2 M$

Linear term washes out the 1st-order PT.

Hatsuda-Tachibana-Yamamoto-Baym (2006)

High-T has crossover verified by experiments and QCD.

High-Density

A duality region where the hadrons and quarks may coexist.

Fujimoto-Fukushima-Hotokezaka-Kyutoku (2022)

May 12, 2024 @ Guiyang, China

Fujimoto-Fukushima-Murase (2019-2021)

Physics of Crossover en de staten de staten staten de s A peak (or enhancement) in the speed of sound ??? What is the physics underlying this behavior ??? [1st-order]

What do we know about high-*T* and small- μ matter?

Suppressed around the phase transition (~1st-order PT) and approaching the conformal limit at high *T*...

Energy-momentum tensor in hydro variables:

May 12, 2024 @ Guiyang, China

ANDAR ANDAR ANDAR ANDAR AND AR AND AR AND AND AR AND A

High-*T***—Non-Derivative Dominant** $c_s^2 \simeq p/\varepsilon$

Fujimoto-Fukushima-McLerran-Praszalowicz (2022)

High Density — Derivative Peak

Interesting question... $\Delta < 0$???

 $\Delta \propto \varepsilon - 3p$ $\propto \frac{d}{d\mu} \left(\frac{p}{\mu^4}\right)$

Thermodynamic degrees of freedom

Negative trace anomaly implies the presence of "condensates".

Epilogue: 1st-order ruled out? Thinking experiment: Rotating superfluid

Epilogue: 1st-order ruled out? Superfluid-vortex continuity

Alford-Baym-Fukushima-Hatsuda-Tachibana (2018)

Summary

ARAN MARAN MARAN

Our understanding about quark matter completely overriden in recent 15 years.

Nuclear matter and quark matter: no order parameter, no phase transition, probably.

Peak in the speed of sound = Quick recovery of conformal symmetry in dense matter.

Higher-form symmetry may detect 1st-order?