Kilonova and r-process in neutron star mergers

Kenta Hotokezaka (RESCEU, University of Tokyo)

Collaboration with M. Tanaka, D. Kato, G. Gaigalas, Y. Tarumi, N. Domoto, E. Nakar

Introduction: Kilonova

• "Kilonova" is an electromagnetic counterpart of neutron star mergers (Li & Paczynski 98).

Radioactivity of r-process nuclei powers kilonvoae. (e.g. Metzger+10).

© Tohoku University

Introduction: Kilonova

 "Kilonova" is an electromagnetic counterpart of neutron star mergers (Li & Paczynski 98).

Radioactivity of r-process nuclei powers kilonvoae. (e.g. Metzger+10).

• A kilonova after the 1st gravitational-wave merger GW170817.

• This is only the kilonova associated with GWs.

© Tohoku University

Introduction: Kilonova

 "Kilonova" is an electromagnetic counterpart of neutron star mergers (Li & Paczynski 98).

Radioactivity of r-process nuclei powers kilonvoae. (e.g. Metzger+10).

- A kilonova after the 1st gravitational-wave merger GW170817.
- This is only the kilonova associated with GWs.
- A kilonova candidate was discovered after the second brightest long GRB 230307A.
 © Tohoku University
- JWST took the spectra of this event.

We wish to learn the elements' origin from kilonova observations

92 89 90 91 Th U Pa Ac

Merging Neutron Stars Dying Low Mass Stars

Exploding Massive Stars Exploding White Dwarfs Cosmic Ray Fission

Big Bang

Li & Paczynski 98, Kulkarni 05, Metzger + 10, Barnes & Kasen 13, Tanaka & KH 13

10km

Li & Paczynski 98, Kulkarni 05, Metzger + 10, Barnes & Kasen 13, Tanaka & KH 13

Time

10km 10-100km

Li & Paczynski 98, Kulkarni 05, Metzger + 10, Barnes & Kasen 13, Tanaka & KH 13

Li & Paczynski 98, Kulkarni 05, Metzger + 10, Barnes & Kasen 13, Tanaka & KH 13

Li & Paczynski 98, Kulkarni 05, Metzger + 10, Barnes & Kasen 13, Tanaka & KH 13

The energy budget of the Kilonova in GW170817

Kilonova: Mass, Velocity, Opacity, Radioactivity

Peak time:

$$t_{\rm p} \approx \sqrt{\frac{\xi \kappa M_{\rm ej}}{4\pi c v_{\rm ej}}} \approx 5 \,\mathrm{days} \,\xi^{1/2} \left(\frac{\kappa}{10 \,\mathrm{cm}^2/\mathrm{g}}\right)^{1/2} \left(\frac{M_{\rm ej}}{0.01 M_{\odot}}\right)^{1/2} \left(\frac{v_{\rm ej}}{0.1c}\right)^{-1/2},$$
Peak Luminosity:
$$L_{\rm bol}(t > t_{\rm p}) \approx M_{\rm ej} \cdot \dot{Q}(t) \approx 2.5 \cdot 10^{40} \,\mathrm{erg/s} \left(\frac{t_p}{5 \,\mathrm{day}}\right)^{-1.3} \left(\frac{M_{\rm ej}}{0.01 M_{\odot}}\right),$$
Temperature:
$$T_{\rm eff}(t_{\rm p}) \approx \left(\frac{L_{\rm bol}(t_{\rm p})}{4\pi \sigma v_{\rm ej}^2 t_{\rm p}^2}\right)^{1/4} \approx 2200 \,\mathrm{K} \left(\frac{L_{\rm bol,p}}{2.5 \cdot 10^{40} \,\mathrm{erg/s}}\right)^{1/4} \left(\frac{v_{\rm ej}}{0.1c}\right)^{-1/2} \left(\frac{t_{\rm p}}{5 \,\mathrm{day}}\right)^{-1/2} (5),$$

The energy budget of the Kilonova in GW170817

- Ejecta mass is~ 0.05Msun.
- The photospheric velocity ~0.1-0.3c.

Observed Spectrum of kilonova GW170817

VLT X-Shooter (Pian et al. 2017)

Observed Spectrum of a kilonova GW170817

The temperature is low ~ 5000 K even at 1.5 day.

Observed Spectrum of a kilonova GW170817

Two clear absorption line features at 8000A & 15000A.

Observed Spectrum of a kilonova GW170817

Later, >7.5d, an emission line feature appears at $2.1\mu m$.

Kilonova vs R-rich star

Strong absorption lines in kilonova should exist in r-rich stars' spectra.

Absorption line identification in GW70817

P-Cygni lines (absorption-emission line)

- Sr II: 0.8µm feature (Watson+19, Gillanders+21, but see Tarumi, KH, + 23 for He I)
- Y II: Sneppen & Watson 23
- La III: 1.3µm feature (Domoto...KH, 22)
- Ce III: 1.6µm feature (Domoto...KH, 22, Tanaka... KH, 23)

2 1 Η He 3 10 4 5 8 9 6 7 Li В С Ν Ο F Ne Be 12 11 13 14 15 16 18 17 S Si Ρ Cl Al Na Mg Ar 19 20 23 25 26 27 28 31 32 33 34 35 36 21 24 29 30 22 Κ Ni Sc Ti V Cr Mn Fe Со Zn Se Ca Cu Ga Ge As Br Kr 43 37 38 39 42 45 48 49 52 40 41 44 46 47 50 51 53 54 Rb Sr Y Zr Nb Tc Rh Pd Ag Sb Mo Ru Cd Sn Те Xe In 55 56 75 76 77 78 79 80 81 82 83 85 86 72 73 74 84 Ηf W lr Pt ΤI Pb Cs Ba Ln Та Re Os Au Hg Bi Po At Rn 87 88 Ra An Fr

1																	2
H		Effective Z 1, energy level split 1															² He
з Li	⁴ Be						-		-			5 B	6 C	7 N	8 O	9 F	10 Ne
۱۱ Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	28 Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	45 Rh	⁴⁶ Pd	⁴⁷ Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	⁵⁶ Ba	Ln	⁷² Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	An															

Fine structure lines

• For example, [O III] 51.81 μ m, 88.36 μ m in the ISM, [Co III] 11.89 μ m in SNe Ia.

Example: Supernova la Nebula

- SN Ia is clearly an iron explosion
- Fine structure lines are seen.

Emission line list: Fine-structure of heavy elements

Singly ionized, the first fine structure level

- Heavy elements have fine-structure lines at ~ 1 30 μm.
- The energy scale of 1st, 2nd, and 3rd peak elements ~ 1 μ m ~ temperature.
- The fine structure lines can dominate the kilonova cooling.

A list up to Z=99 (Einsteinium)

KH+in prep.

lons included in our line list

• 10⁵ lines are included.

lonization

• Wavelengths and transition rates are reasonably accurate (<1%)

Kilonova Nebular Spectrum

Preliminary result (KH+ in prep), collision strengths are computed with HULLAC.

- The solar abundance (2nd 3rd r-process peaks) is assumed. $X^{+1} = X^{+2} = 0.5$
- [Te III] 2.1µm is the strongest M1 line.

Te III line in the kilonova GW170817

KH+23

• The Te III line is expected to be the strongest M1 line because it is a second r-process peak element.

Te III line in the kilonova GW170817

KH+23

• The Te III line is expected to be the strongest M1 line because it is a second r-process peak element.

Out line

- Introduction Kilonova and nebular emission
- Kilonova in a long GRB 230307A
- Discussion

Extremely bright GRB 230307A

Levan,...,KH+23

GRB 230307A 2000 B1=8-25 keV one per millenium one per century one per decade ne per month B2=25-100 keV 1750 one per year B3=100-900 keV 1500 1250 Counts 1000 Probability density > 750 500 **GRB** 221009A **GRB 230307A** 250 10^{-2} 0 10 B3/B2 Ratio B3/B1 10^{0} 10^{-3} 10^{-1} -6 _4 -2 20 40 60 80 0 $\log(\text{Fluence}) (\text{erg cm}^{-2})$ Time since trigger (s)

T₉₀ ~ 35 s : Typical long GRB.
The 2nd brightest GRB.

GRB 230307A: JWST NIRCam Image

30 days post burst Large off-set ~ 40kpc, extremely red.

GRB 230307A light curve and JWST photometry Levan,..KH+23

JWST Spectrum

Levan,...,KH+23

- A line feature at 2.1µm exists in both 30 & 60 days after the burst.
- M(Te III)=10⁻³M_{sun} in the line forming region, v_{ej} =0.08c.
- The total mass ~ $0.05M_{sun}$ if the solar r-process abundance.

R-process mass budget from GWTC-2

Ref: Goriely 1999, Lodders et al 2009, Wanderman & Piran 2015, Fong+2015, KH, Piran, Paul 2015, Beniamini, KH, Piran 2016, Pol, McLaughlin, Lorimer 2019, KH & Nakar 2020, LVC 2020

Summary

- Sr, Y, Ce, La, He may be identified as absorption lines in the kilonova in GW70817.
- Te emission line 2.1µm seems to produce the late time spectral peak.
- GRB 230307A was associated with a kilonova-like counterpart.
- 2.1µm line exists in the JWST spectrum, which may be Te.
- We will test the line identifications with future kilonovae.