NEUTRON STAR MASS LIMITS

Recent Insights

Lívia S. Rocha

DDF24 - 10 to 15 of May, 2024

ABOUT ME

• Currently: PostDoc at IFUSP, Brazil. • CTAO Consortium: High energy emissions of Spider Systems.

• August 2023: PhD at IAG-USP, Brazil Mass distribution and formation scenarios of neutron stars • Part of GARDEL group

Antônio Bernardo

Jorge Horvath

Lívia Rocha

Lucas de Sá

Pedro Moraes

Riis Rhavia

MAXIMUM MASS OF NS

• Under general relativity, the hydrostatic equilibrium is given by the TOV equation:

$$\frac{dP(r)}{dr} = -\frac{Gm(r)\rho(r)}{r^2} \left(1 + \frac{P(r)}{c^2\rho(r)}\right) \left(1 + \frac{4\pi r^3 P(r)}{c^2 m(r)}\right)$$

$$m(r) = 4\pi \int_0^r r'^2 \rho(r') dr'$$

- Foresess the existence of an upper limit of mass for stable configuration
- Highly dependent on the Equation of State (EoS)

NS's formed from core-collapse supernova of Fe cores

 NS's formed from core-collapse supernova of Fe cores

Core subject to electron degeneracy pressure

 NS's formed from core-collapse supernova of Fe cores

Core subject to electron degeneracy pressure

Core w/ almost invariant mass

 NS's formed from core-collapse supernova of Fe cores

Core subject to electron degeneracy pressure

Core w/ almost invariant mass

NS's with m ~ 1.4 M_{\odot}

• NS's formed from core-collapse supernova of Fe cores

Core subject to electron degeneracy pressure

Core w/ almost invariant mass

NS's with m ~ 1.4 M_{\odot}

Observations match with theory! $m = 1.35 \pm 0.04 \ M_{\odot}$

 NS's formed from core-collapse supernova of Fe cores

Core subject to electron degeneracy press

Core w/ almost invarian

NS's with m ~ 1.4

Observations match with theory! $m = 1.35 \pm 0.04 \; M_{\odot}$

THE LOWER MASS GAP

• NSs below 2 M_{\odot} + BH candidates in LMXBs + supernova mechanisms: Lack of compact objects between 2 - $5~M_{\odot}$

Her X-1 Cen X-3 LMC X-4 SMC X-1

A FEW YEARS LATER...

LETTER

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

• EoS must be stiffer than we thought

doi:10.1038/nature09466

CURRENT SCENARIO

In short...

- Bimodal gaussian distribution
 - Another formation
 mechanisms/accretion history ?
 - Electron capture supernovae
 - SNe leading to initial masses up to 1.9 M_{\odot} (Burrows and Vartanyan, 2021)
- Maximum mass: Shao et al. (2020); Fan et al. (2024); $M_{max}\sim 2.26~M_{\odot}$

	4U 1538-522	
	Her X-1	· .
	11741+1351	
	11023+0038	
	10453+1559 comp	
#	11918-0642	
	12222-0137	
	11807-2500B.comp	
	SMC V-1	
	11723-2837	
	11756-2251 comp	
	11802-2124	
	10737-3030B	
•	11750.374	
	J1/50-5/A	
	11141 6545	
1	J1141-0545	1
	J1906+0746	
	B1855+09	
	J1/13+0/4/	
	J1906+0746 comp.	
-	J2045+3633	
•.	B1534+12	
, ê	J0/3/-3039A	
	J1/5/-1854	
	J0509+3801	
	J1911-5958A	
	J1756-2251	
	B1534+12 comp.	
٠	B2127-11C comp.	
	B2127-11C	
	J1807-2500B	
. 1	B2303+46	
	B1913+16 comp.	
1	J2234+0611	
	J1/5/-1854 comp.	
	J2053+4650	
	XTE J1855-026	
	J2043+1711	
	J0337+1715	
	B1913+16	
	25 0921-630	
	J0437-4715	
	J0509+3801 comp.	
	J1949+3106	
	J1738+0333	
	J0024-7204H	
	J0514-4002A	
-	J1950+2414	
		0 75

1.00 1 M(

DE SÁ ET AL. (2022)

THE BNS MERGER

GW170817:

- New channel to probe NS physics
- Electromagnetic counterpart

Atempt to calculate TOV mass

- Margalit and Metzger (2017):
 - $M_{max} \leq 2.17 \ M_{\odot} \ (90\%)$
- Ruiz et al. (2018)

 $M_{max} \lesssim 2.3 \ M_{\odot}$

- Shibata et al. (2019): $M_{max} \sim 2.16 - 2.28 \ M_{\odot}$
- Ai et al. (2020)

 $\overline{2.09 \lesssim M_{max}} < 2.43 \ M_{\odot}$

Match maximum mass from galactic pulsars!

GW190425

ABBOTT ET AL. (2020)

Low-spin prior:

 $1.60 \le m_1(M_{\odot}) \le 1.87$ $1.46 \le m_2(M_{\odot}) \le 1.69$ $M_{TOT} = 3.3 \pm 0.1 \ M_{\odot}$ $\mathcal{M} = 1.44 \pm 0.02 \ M_{\odot}$

 $>5\sigma\,$ away from DNS sample

ROCHA ET AL. (IN PREP)

A TENSION FROM GW DETECTIONS

GW190814

$m_1 = 23.2^{+1.1}_{-1.0} M_{\odot}$ $m_2 = 2.59^{+0.08}_{-0.09} M_{\odot}$

Constraints on M_{TOV}:

• GW170817:

 $M_{TOV} \leq 2.3 M_{\odot}$

• GW190814 and GW200210: $M_{TOV} \geq 2.5 \ M_{\odot}$

(IF companion is a NS!)

THE ASTROPHYSICAL JOURNAL LETTERS, 921:L25 (7pp), 2021 November 10

© 2021. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

The Mass Distribution of Neutron Stars in Gravitational-wave Binaries

Philippe Landry ^(D) and Jocelyn S. Read

Nicholas & Lee Begovich Center for Gravitational-Wave Physics & Astronomy, California State University, Fullerton, 800 N State College Boulevard, Fullerton, CA

92831, USA

Received 2021 July 16; revised 2021 October 12; accepted 2021 October 13; published 2021 November 3

• Their conclusion: • Extragalactic sample of NSs should be different from the galactic one Maybe too early to take such conclusion.

LATEST DISCOVERIES IN OUR GALAXY

PSR J1653-0158

Black widow pulsar

 $m_p = 2.15 \pm 0.16 \ M_{\odot}$

KANDEL AND ROMANI. (2022)

PSR J0952-0607

Black widow pulsar

 $m_p = 2.35 \pm 0.17 \; M_{\odot}$

 $M_{max} > 2.19 \ M_{\odot}$

ROMANI ET AL. (2022)

PSR J0514-4002E

10

Pulsar with a compact companion (BH or NS)

 $m_c = 2.35^{+0.20}_{-0.18} M_{\odot}$

 $2.09 \le m_c \le 2.71 \ (95\% C.I.)$

 $M_{TOT} = 3.8870 \pm 0.0045 \ M_{\odot}$

ROMANI ET AL. (2022)

THE GALACTIC SAMPLING

- Differentiate measurements based on measured post-Keplerian parameters
- $P(d|m_p) \propto \mathcal{N}(m,\sigma)$
- $P(d|m_p) \propto \int \int P(\hat{m}_T, \hat{f}|m_p, m_T, i) P(m_T) P(i) didm_T \longrightarrow \int e^{ix} dx$
- $P(d|m_p) \propto \int \int P(\hat{q}, \hat{f}|m_p, q, i) didq \longrightarrow \int exp\left(-\frac{(q-\mu_q)^2}{2\sigma_q^2}\right) \frac{1}{2\sigma_q^2}$

Assumes a uniform distribution over cos i, which means that i can go from 0 to 90°.

$$p\left(-\frac{(m_T-\mu_T)^2}{2\sigma_T^2}\right)\frac{m_T^{4/3}}{3(m_T-m_p)^2f^{1/3}\sqrt{1-\frac{f^{2/3}m_T^{4/3}}{(m_T-m_p)^2}}} dm_T$$

$$\frac{(1+q)^{4/3}}{1/3m_p^{2/3}q^2\sqrt{1-\left(\frac{f}{m_p}\right)^{2/3}\frac{(1+q)^{4/3}}{q^2}}} dq$$

Orbital inclination is the main source of uncertainty for mass measurements.

PSR J1748-2021B: • Freire et al. (2008) • $m = 2.74 \pm 0.21 M_{\odot}$ • Probability of $m < 2M_{\odot}$ is 1% • Probability of being between 1.2 < $m(M_{\odot})$ < 1.44 is 0.10%

• What do we obtain treating all masses equaly, compared with the standard treatment?

Sampling with uniform distribution over cos i

• We need to be more careful with this assumption. • Ideal case: include constraints of orbital inclination in the analysis (to be done)

All systems with normal likelihoods

EVIDENCE AGAINST A MASS GAP

• There is no absolute gap!

DE SÁ ET AL. (2022)

SPIDER PULSAR BINARIES

- Millsecond pulsars (< 15 ms)
- Low-mass companion
 - \circ Redbacks: 0.1 0.5 M_{\odot}
 - \circ Black widows: << 0.1 M_{\odot}
- Short-orbits (< 1 day)
- Circular orbits (?)
- Radio (and gamma) eclipses
- Old systems
- Long accretion phase

• PSR B1957+20:

 $m_p = 2.4 \pm 0.1 \ M_{\odot}$

$m_p = 1.81 \pm 0.07 \ M_{\odot}$

STRANGE STARS

• CFL state (Lugones and Horvath, 2002)

$$P(r) = \frac{1}{3}\rho + \frac{2\eta}{\pi}\rho^{1/2} - \left(\frac{2\eta^2}{\pi^2} + \frac{4B}{3}\right)$$
$$n = -\frac{m_s^2}{\pi} + \frac{2\Delta^2}{\pi}$$

CENTRAL COMPACT OBJECT HESS J1731-347

 $m = 0.77^{+0.20}_{-0.17} M_{\odot}$

 $R = 10.4^{+0.86}_{-0.78} \ km$

Mass-radius relation for different parameters of CFL EoS

HORVATH ET AL. (2023)

SUMMARY

- Galactic DNS sample follows a bimodal gaussian.
- The analysis of galactic sample should include constraints on orbital inclination.
- An absolute mass gap is ruled out.
- We cannot ignore the possibility of at least some of the mass gap objects being NSs
 - Maximum mass of NSs > 2.5
- Strange star models are doing a good job to explain the MGO

