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Numerical relativity 2020s
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Einstein’s equation: Established

Hydrodynamics/Magntohydrodynamcis/
Radiation hydrod/viscous hydro:
Many good codes

Maxwell’s equation;
Ideal MHD -2 induction equation:
Many good codes (as well as poor ones)

Neutrino radiation transfer: Last frontier
but several approximate solvers, e.g., M1
scheme, are available

+ powerful HPC (>10 PFlops): available

Now we can now apply NR to a variety of
high-energy astrophysical phenomena



I Introduction: long gamma-ray bursts

Gamma-Ray Bursts
(Imaginary Picture)

ys are produced when Observer ™

gamma-ra
the jet (close to the light speed) breaks "
out from the stellar envelope \

Credit: Totani

A black hole, accretion disk and jet are
™ formed by the gravitational collapse of
s the stellar core

* A very massive star (more than 20 solar mass),
. . whose outer envelope (hydrogen'and helium) has
Kyoto University, T. TOTANI . been removed
. - ®

 Real Energy ~ 105171 erg (isotropic ~ 10331 erg)

 Duration ~ a few—100 sec; luminosity ~ 10*—! erg/s
—> Relativistic phenomena cf Ly, =4*10% erg/s

 Event rate ~ 10 of ordinary supernovae



Optical (r-band)

I Introduction: long gamma-ray bursts

* Some of them are associated with high-energy SNe

—~ GRB 090618 |
g * 1~ Significant >°Ni production,
& 001 "1 with >0.1 solar mass,
8 103 | and radio active heating
2 : SONi1>°%Co>>%Fe
= 107" ¢

0.1 1 10 100

t -t (days) Cano et al. 2017

* Promising engine = Collapsar ~ rotating stellar core
collapse to a BH + jet (Woosley 1993)

 However, detalled mechanism i1s still uncertain



Rotating black hole formation & explosion

Naive qualitative scenario 1s

1. Collapse of a massive rotating progenitor
Proto neutron star formation

Further infall - black hole formation
Accretion onto black hole + formation of disk

A

Jet from vicinity of the black hole + explosion

t <atew 100ms t~1s t>1s



How to produce a GRB + supernova?

* There are three major questions:

1.

[s the system of a BH + disk formed?

2. What produces a supernova-like explosion?

3. How a jet 1s launched? | Sec. 1—v

Y| %

-~ WF

Sec. 11

Sec. 11



II Supernova-like explosion from a torus

around a black hole in viscous hydro
Fujibayashi et al. ApJ 2023, 956 (2309:02161)

* We can accept formation of a black hole and torus,
if a progenitor star 1s compact and rapidly rotating

* Stellar evolution researchers have shown 1t possible

to have rapidly rotating massive progenitors;
E.g., Wooley & Heger 2005; Aguilera-Dena et al. 2018, 2020



O’Conner-Ott compactness parameter
for Aguilera-Dena (ApJ 2020) models

1.0 I I I I
Explosion according to both tests

® Explosion according to Muller test
Explosion according to Ertl test

0.8F @ Implosion
P ~35Mg

¢ = M/ Mg
M R(Myyy = M) /1000 km'

\ 0.6
M=2.5 solar mass™ =

(U

t Black hole

1| formation
1s likely

oMy ~20Mo

0.4

Aguilera-Dena et al. 2020

0'00 10 20 30 40

Initial mass [Mg]

Metallicity = 0.02 solar abundance, Rotation=600km/s
- Chemically homogeneous model



Specific angular momentum wrt enclosed mass

Stellar models by Aguilera-Dena et al. 2020
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Dashed curves: Specific angular momentum of innermost stable
circular orbit of BH for given mass m and spin /] = [ jdm

Filled circles show the parameter at the formation of a disk
Massive BH + disk is a natural outcome (in the absence of
earlier SN explosion) in their stellar models



Supernova-like explosion from a torus

around a black hole in viscous hydro
Fujibayashi et al. ApJ 2023, 956 (2309:02161)

e Another hint: Stellar explosion 1s not likely to be

driven by a jet of gamma-ray bursts;
E.g., Eisenberg, Gottlieb, & Nakar, MNRAS 517 (2022) ;

dE/dv (v) distribution cannot be reproduced by jets
- We need a mechanism for the “explosion”




Another hint

Eisenberg, Gottlieb, & Nakar, MNRAS 517 (2022)

— Successful

——=SN 2002ap (lc-BL)
1052 — Barely choked — SN 1998bw/ IGRB 980425
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Simulation results VS Observational facts:

Looks two components

Engine of supernova explosion is not likely to be GRB jet



Viscous heating rate in a disk around BH

* Suppose BH mass ~ 10 M, and disk mass ~ 1 M,

* A torus/disk 1s magnetized and turbulence 1s induced by
magnetorotational instability = viscosity is induced

* Viscous heating rate of tori/disks:

. v M, orus Ver lal‘ e'
B o~ 4x10% (O‘ ) t y large.
<107 ere/s (03) \ i,

’ ‘. 2/ Mon ~1/2 P —3/2
109 cm/s 10M 10 Mpy

R3 °

Alpha disk model with v = a,c2Q71; Q = \/ a, = 0(0.01)

* If viscous heating power can be injected efficiently to
the infalling matter, (luminous) explosion may occur
—> Investigate in numerical simulation!



20 solar mass model; a,=0.03 viscous + neutrino rad-hydro

BH+disk is formed — 10~ 1c Fujibayashi et al. ApJ 2023, 956
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Explosion energy for 9 and 20 solar-mass models

* Typical explosion energy ~ 10°! erg, comparable to the
typical supernovae energy

- We may expect SN-like explosions but not high-energy
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Exploring larger-mass models

* Numerical simulation for larger-mass models 1s
expensive (longer timescale for BH growth)

* BH formation and early evolution may be skipped,
because matter simply collapses to a BH and free-
falls into the BH until disk formation

* Start from a BH + infalling matter with free fall
from the original progenitor models

Fujibayashi et al. arXiv: 2309:02161; PRD 109 (2024)



Final stellar radius depends only weakly on the initial mass:
R+~ 300,000 km, 1.e., compact (=good for jet penetration)

0.60 s ALMS18
s Current work

0.55|
0.50 |
0.45} ]
;-1 300,000 km

0.40

0.351

Final radius
Final radius [Rg]

0.30

0.25F

0.20

10 20 30 40
Initial mass [My]

Initial mass



Why high-mass has advantage for high energy?

* Compactness of progenitor stars

C.=—
R,

M. : Stellar mass, R, : Radius

N W

e Mass accretion rate M, o - X - = C,
ff *

RS .
Ler= \/ - free fall timescale

*

* Progenitor models: R, = 300,000 km irrespective
of the stellar mass

—> Higher mass models result in higher mass
accretion rate

—> High efficiency in viscous energy generation



Exploring larger-mass models

Stellar models by Aguilera-Dena et al
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35 solar mass progenitor model = 15 solar mass, spin
0.66 BH + 12 matter infalling (+ mass loss)



Entropy/baryon Electron fraction
s/kp
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Eexp (1051 erg)

Explosion energy in units of 105! erg

10 ¢

High explosion energy and ejecta mass!

AD35—15:hv 1052 erg |

—— AD35x0.6-21.5
AD35x0.8-18

— AD35x1.2-12/5
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Ejecta mass

I — AD35-15-hv

[ — AD35x1.2-12.5

— AD35-15
~— AD35-15-mv

— AD35x0.6-21.5
— AD35x0.8-18
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t— texp ()

« Explosion energy ~ 10°% erg >> 10! erg
* Ejecta mass ~4—3 solar mass
* SNi mass (radio active source) > 0.15 solar mass

-> Large enough for Hypernovae!




BH + massive disk can be the
central engine of stellar explosion
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Observational data: Taddis et al., A & A 621 A71 (2019); Gomez et al., ApJ 941, 107 (2022)



III GRMHD (+ neutrino) simulations: jets

Shibata et al. 2023, arXiv: 2309.12086; PRD 109, 2024
v'GRB jets cannot be driven by viscous hydrodynamics

v'Viscous effects come from magnetohydrodynamical
(MHD) effects 1n reality

—> Viscous hydrodynamics should be replaced by MHD

- Perform MHD simulation with the same initial
condition: BH + infalling matter!

* Axisymmetric simulation, to perform a stmulation for
>10 sec (as a first step; 3D is necessary ultimately)

* Initial magnetic field?? Broadly, two possibilities

1. | Fossil poloidal field (easy to do, often done)

2. Poloidal field developed 1n the disk through MRI
(more realistic, but super expensive)




Promising generation mechanism of GRB jets
= Blandford-Znajek mechanism (1977)

* Suppose the presence of a spinning black
™ hole penetrated by magnetic fields

S : : : :
* Rotational kinetic energy of BH 1s

extracted by the magnetic field

* Luminosity (f = ©/Qy, ¥=BH spin)

dM 1—

1—f ( Mgnu °
—1.1 x 10°Y
<107 Ky <1OM@>

BT 2 X 2 72_|_—|—2
(i) @ (22)

E.g., McKinney & Gammie ApJ (2004) Po=14++1—y2

Q

Typical gamma-ray luminosity of GRBs could be produced



15 solar mass, spin=0.66 BH + 10.5 solar mass
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Weaker magnetic field case: no jets in 13s but later yes
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GRMHD results with initially poloial field

* In the presence of poloidal magnetic fields, the field
strength 1s amplified by winding associated with BH
spin, and a jet is driven by the Blandford-Znajek effect
when magnetic pressure overcomes the ram pressure,

BZ

87'[

ie., > DinfallVinfan ()

* Then B on the horizon is approximately fixed:

_ 1/2 4.
~ 13 Pinfall infall
B~7.5%10 G(106g/cm3) (FeLety

* Poynting luminosity is higher for stronger initial field
because of Eq. (*); o, 1S higher in earlier phase

* Stellar explosion often accompanies with the explosion
energy of order 10°2 erg or more in this setting



Poynting luminosity
Jet launch cases 2 Lp; ~10°—10° erg/s:
1O5§Agree broadly wrth order of magnltude for GRBs

- Initially hlgh ﬁeld strength — BIL3 BIOS == BLLS
—— BI1l.3 —— B100 === BIl3hi |
| > Higher Poyntlng luminosity -, :

c 1 2 3 4 5 6 7 & 9 10 11 12

Shibata et al. 2023, arXiv: 2309.12086



Ejecta mass and outflow (jet) energy

t Ejectamass 0 o o —o-==--
~— 0 s
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Outflow energy can be > 10°? erg; still increasing



Evolution of black holes: spin down in MAD state

In numerlcal relat1v1ty, thls 1s directly obtained from BH'

20

Mgy (solar mass)

0.74 | BI113 Bql1.0c

* Spin-down timescale = 30—300 s for strong jet models
—> Rotational kinetic energy is the source of jets
* Spin-down timescale 1s shorter for stronger 1nitial field



Problem: Huge total Poynting energy problem

* Egy; = Lgy X (spin-down timescale)

* For strong poloidal field models, Eg; > 10> erg:
Larger than GRB + afterglow + SN energy!?

 This cannot be accepted

* The spin-down timescale should be much longer than
GRB timescale ~ 10—100 s! And later, magnetic field
should be dissipated

—> Fossil poloidal fields must not be very strong

$

Magnetic field lines that penetrate BH should be
developed in a later stage



IV How to get poloidal magnetic fields that
penetrate black hole?

* Many numerical simulations assume aligned poloidal
magnetic fields that penetrate black hole initially
—> Jet 1s launched as we show in this talk

* However, this 1s the “assumption=result” simulation

* The most important question (for me) 1s “how and
when such magnetic field is established”

* Our belief: In the torus/disk surrounding the BH,
magnetic fields are amplified, and due to the matter
accretion (together with the magnetic fields), a
magnetic field that penetrates the BH is formed.

* We need to resolve MHD instability in the disk; it 1s
super expensive but necessary



Phenomenological approach: Add dynamo term

j'u — ﬁeu'u T GC(F'WMZ/ + ad*F'Wul/)

/

conductivity

* The dimensionless coefficient a4 1s related to dynamo
for hypothetical amplification of fields. J' « ayB*

* Magnetic field 1s amplified exponentially until the
saturation 1s reached : & exp(@,,..f)

Wmax :§ ﬂagacsg) . — 46 S_1 ‘aiL .
4 4 10

o \V(_ISal
“\3x 107 ¢ 10° rad/s)

Sqo: degree of differential rotation




Start from 16 solar mass BH + infalling matter + toroidal field;

—£0.0l¢, 0.1¢; Ic from Aguilera-Dena 2020
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5.

Order of Timescales inferred

Collapse to a proto neutron star ~ 0.1 s
Black hole formation ~ O(1) s
Subsequent disk formation around black hole ~ 10 s

Amplification of magnetic field in the disk ~10 s
-> Magnetic fields that penetrate the BH are formed

Jet & stellar explosion > 10 s

* GRB & stellar explosion may be launched at > 10 s after

stellar collapse; different from ordinary supernovae

* [t 1s not easy to prove 1t observationally...

« L >10°? erg/s is continued for > 10 s



V Summary

* Rapidly rotating massive stars have potential for
powerful explosion of E,, ~ 10°* erg by viscous effect
(that should result from MHD turbulence)

« Explosion energy, ejecta mass, and *°Ni production are
good for reproducing type Ib/Ic/Ic-BL SNe
-=> The engine for some of type Ib/Ic/Ic-BL SNe may
be a black hole + a torus

* If a poloidal magnetic-field penetrating the black hole
is present, a jet is likely to be produced as well
- GRB-SN association may be explained

* However, the explosion energy can be too high in the
presence of initially strong poloidal field
—-> Magnetic field on the BH is likely to be developed
from the MHD instability of the torus



Thank you for your attention!



