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Unexplored parameter space in radio astronomy
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Magnetars
Historically detected as Anomalous X-ray Pulsars or Soft Gamma Repeaters
Large magnetic field, B = 101G estimated from P and P
Persistent and bursting X-ray activity too luminous to be powered by spin-down
Radiated energy often dominated by most energetic flares with E~3 - 10%* — 3 - 10*%erg
Magnetic field decay invoked as power source
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Known Galactic magnetars
Confirmed Galactic magnetars have 2 < P < 12 s (regular pulsars have comparable or much lower P)
P4 due to decay of surface field after ~103 — 10*yr (colpi et al. 00, Dall'Osso et al. 12, Vigano et al. 13, PB et al. 19)
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Fast Radio Bursts

* FRBs are bright, rapid (ms duration) pulses, observed across cosmological distances
* About 50 sources are known to be repeating (non-catastrophic events)

 Many models focus on magnetar central engines, due to: RM o Jandl

1. High polarization and large rotation measure - >

Strongly magnetized engine and environment

(e.g. Masui et al. 15, Michilli et al. 18, Anna-Thomas et al. 23) | PSR J1746-2856
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Fast Radio Bursts

* FRBs are bright, rapid (ms duration) pulses, observed across cosmological distances
* At least some bursts are known to be repeating (non-catastrophic events)

1.0
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SGRBs
—— LGRBs
1 CC-SNe
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 Many models focus on magnetar central engines, due to:
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2. Host galaxies and offsets consistent with
core-collapse SNe (e.g. Heintz et al. 20, Bochenek et al. 20, Gordon et al. 23)
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Fast Radio Bursts

* FRBs are bright, rapid (ms duration) pulses, observed across cosmological distances
* At least some bursts are known to be repeating (non-catastrophic events)

 Many models focus on magnetar central engines, due to:

3. Statistical properties of burst repetitions consistent with magnetar bursts (e.g. Wadiasingh &
Timohkin 19, Cheng et al. 20, Cruces et al. 21, Totani & Tsuzuki 23)
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Fast Radio Bursts

* FRBs are bright, rapid (ms duration) pulses, observed across cosmological distances
* At least some bursts are known to be repeating (non-catastrophic events)

 Many models focus on magnetar central engines, due to:

4. Large inferred volumetric rate of repeaters
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Fast Radio Bursts

* FRBs are bright, rapid (ms duration) pulses, observed across cosmological distances
* At least some bursts are known to be repeating (non-catastrophic events)

 Many models focus on magnetar central engines, due to:

5. FRB 200428 — Association with known Galactic magnetar, SGR 193542154 (Chime et al. 20, Bochenek
et al. 20, Li et al. 21)
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Observed FRB periodicity

* Two prolific repeaters exhibit active phase periodicity
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Binarity

/ o/ TR \Companién’s
: /\ stellar wind

l‘ 'gNeutron
i star’s wind

FRB

(Lyutikov 2020, loka & Zhang 2020)

Observed FRB periodicity

precession

(Zanazzi & Lai 20, Levin et al. 20,
Sridhar et al. 21)

NS rotation

PB, Wadiasingh & Metzger 20



Simplest (most naive) story — long period magnetars
»
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ABSTRACT

The recurrent fast radio burst FRB 180916 was recently shown to exhibit a 16-d period
(with possible aliasing) in its bursting activity. Given magnetars as widely considered FRB
sources, this period has been attributed to precession of the magnetar spin axis or the orbit
of a binary companion. Here, we make the simpler connection to a rotational period, an idea
observationally motivated by the 6.7-h period of the Galactic magnetar candidate, 1E 161348—
5055. We explore three physical mechanisms that could lead to the creation of ultralong period
magnetars: (i) enhanced spin-down due to episodic mass-loaded charged particle winds (e.g. as
may accompany giant flares), (ii) angular momentum kicks from giant flares, and (iii) fallback
leading to long-lasting accretion discs. We show that particle winds and fallback accretion can
potentially lead to a sub-set of the magnetar population with ultralong periods, sufficiently
long to accommodate FRB 180916 or 1E 161348-5055. If confirmed, such periods implicate
magnetars in relatively mature states (ages 1—10kyr) and which possessed large internal
magnetic fields at birth By, = 10'® G. In the low-twist magnetar model for FRBs, such long
period magnetars may dominate FRB production for repeaters at lower isotropic-equivalent
energies and broaden the energy distribution beyond that expected for a canonical population
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Phenomenological evidence for enhanced NS spin-down

Enhanced spin-down associated with GFs and strong bursting behavior

© SGR 1900+14: x,, = =~ ~10™* after 1998 GF

* SGR 1806-20: Increased P since 2004 GF. Up to 2012, P increased by extra 2% compared to
pre-GF extrapolation (Younes et al. 15).

« Kinematic age constraints of these magnetars suggest further P enhancements in their past
(Tendulkar et al. 12)

* 1E 2259+586 : Anti-glitches with x;,~2 10~ (Archibaled et al. 20)

Simplest phenomenological model

If x, = const then Pr = P exp(prp) — Pr > Py for N, > x;l
* With Egp~4 10**erg and x,~107%, a significant increase of P requires a magnetic energy

reservoir of >4 10*8erg or internal field Bj,, > 5 101°G
* Compare to SGR 1900+14: Bg;;, = 7 10'*G and recall that B, ~10 By, inferred from X-rays

* Small population of highest B magnetars could plausibly evolve to ULPMs
PB, Wadiasingh, Metzger 20



Physical mechanisms for enhanced spin-down

Charged particle winds

Mass—loaded charged wind with L, > Lg;;,, opens up B lines beyond

1/4 Field lines )
BczlipRIZVSC opened by W|nd Quiescent
RopenNRNS 3 (Thompson & Blaes 98, Harding et al. 00)
pw
Spindown scales as open flux squared -> Enhanced spindownP xP .~  __-----=- .
ICRgpen 7 1/2 L ===
Pr = Pyexp(= ) with 7 = Bdw NS ~510 Bdlp,lSLpW 20 S ==

1/2 1/2
Bdlp ISEP“ 47A pw,2

Ef 44

\§

Mass loaded outflows also needed for ‘far-away’ FRB models (Margalit & Metzger 18) ~~ <
Pulsating tail of GF require mass-loaded wind — longer duration favors spindown ~~. o

Exponential sensitivity to physical conditions - > small fraction of ULPMs -
PB, Wadiasingh, Metzger 20



Physical mechanisms for enhanced spin-down

Charged particle winds
* Monte Carlo proof of concept:

—magnetar at GF formation
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Galactic Ultra Long Period Magnetar (ULPM) candidates

* Various Galactic objects show magnetar phenomenology

1E 161348-5055
Pulsating (P~6.7hr > P,4,) central compact object in SNR RCW 103:

1. ~ms duration short X-ray bursts - } Magnetar-like phenomenology
Long-term outbursts and non-thermal hard X-ray emission

2
3. Proper motion ~170 kTm from CHANDRA imaging — Wide binary would have been disrupted
4. Companion hotter than M7 ruled out by HST observations — close binary should have been detected

Credit: De Luca et al. 06, 08, Esposito et al. 11, D’Ai et al.

16, Rea et al. 16, Tendulkar et al. 17, Borghese et al. 18 RCW 103



Galactic Ultra Long Period Magnetar (ULPM) candidates

* Various Galactic objects show magnetar phenomenology

GCRT J1745-3009
The Galactic “burper”. A P~77 min source discovered serendipitously by VLA

2
1. 10 minute wide “pulses” -> minute timescale variability implies Tz > 1012 (70de) k

2. Optical observations rule out even M type / brown dwarf nearby counterpart
3. If period is spin —cannot be rotation powered — suggests magnetar origin

Credit: Hyman et al. 05,Kaplan et al. 08, Spreeuw et al. 09



Galactic Ultra Long Period Magnetar (ULPM) candidates

* Various Galactic objects show magnetar phenomenology

Radio-loud pulsars
»  RRAT

PSR J0901-4046 — Meertrap detected pulsar L

Magnetar
SNR

A P~76s,P~2 10713 pulsar at a distance of 330 pc » B;~2.6 104G Binary
1. Pulsar radio characteristics: high polarization fraction, PPA
swings, very large brightness temperature, variability in single
pulses of flux and polarization

NS spindown cannot power observed radio luminosity
Challenges pulsar deathline

Tens of ms QPOs — Support existence of NS crust

Precise (~107°) timing and strong GAIA limits — not in binary

2021-02-02-01:37:55 2021-02-01-01:38:40 2021-02-01-01:42:27

/
Y 4
/Y/AR Scorpii
/

/ %)0901-4046
J 7

of VN
/‘{/Iozsors&sa

/ 7/
12251-3711

4

) .' /(
P ////
> /// \
/// ﬁ ‘A
. fJ’2144—393 :
b/ k

7
Y
o/

> ’//. \
7// ® ULPM \\\
" /// | candidates | \
>/ / B

Period (s)

Credit: Caleb et al. 2022

|
wn
("2}
)]
>
=
©
>
o
]
©
©
o
T
]
o

e W




An aside — How confident is the magnetic field estimate?

Field lines _
opened by wind Quiescent
g ate
//
o= -
7 -
7 ’/’
VA
* Multipolar components? R
5 . ] open
P~80s — Ry c~3:10°Ryg = multipole components sub-dominan
_ _ Light
* Particle winds? _ €ylinder
1. Hard to reconcile with timing N T T
. . . . B(rop)zrgpc 6¢31% P2 _ ] \\\ ~~~~~~~~~ .
2. Particle wind luminosity Lp~ . ~ IpTRe (Harding et al. 99)

Powered by magnetic energy: L, < Eg/t

Strong field required even if efficiency of converting magnetic power to radio luminosity is 100%



Galactic Ultra Long Period Magnetar (ULPM) candidates

* Various Galactic objects show magnetar phenomenology

GLEAM-X J162759.5-523504.3
AP~1091s,P < 1072 persistent radio transient at a distance of 1.3 kpc

1.

e W

Close to 100% linear polarization
Rapid (~0.5 s) variability suggesting compact object with large brightness temperature ~1016k
Cannot be a rotation powered NS

2% duty cycle —inconsistent with A¢ « P~1/2 of radio pulsars
Beyond pulsar death-line for standard pulsar field strength

o X-ray detectéd'magnetars

® Radio/X-ray magnetars

« Radio pulsars By
GLEAM-X J162759.5—523504'3. _

c"'--.__;

Credit: Hurley Walker et al. 22



Most recent addition to ULPM population

GPM J1839-10

P~1320s,P < 3.6 10713 - continuously active for >30

years!

d = 5.7kpc (based on DM)

High polarization (up to 100% in some bursts)
Variability as short as 0.2 s over which PA may switch by 90°

3-10% duty cycle

Hurley-Walker et al. 23
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ULPM candidates Source densities
* Nearby distances of J0901-4046 and GLEAM-X suggest many more Galactic sources

3 10~* volume of Galaxy within 400 pc — logo(dmin [kpc])
=3500 similar objects to J0901-4046 in MW ‘

More refined analysis consistent with simple
estimate and demonstrates robustness of
dmin X ns_l

€c¢’le1L dd



Age of ULPM candidates

Spindown age provides a rough upper limit T < tgp~12Myr (J0901-4046)

Timing: v/, S 107% - 7 = 100kyr

Source density limits: N < Necsye = T~ N/ = 1.2Myr for J0901-4046 (t 2 38kyr for GLEAM-X)
Proper motion: No detected SNR and low offsets from Galactic plane = t = 30kyr

Cooling age limits: Upper limit on X-ray flux = NS must be old and cold, T = 100kyr

E -~ =+ 0.1% NS surface
1% NS surface
-+ 10% NS surface
==+ Full NS surface
PSRJ0901 XRT 3 o limit
i — GleamX CXO 3o limit
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Main challenge for FRB association - Source densities

e R3 birth rate < 107 3ccSNe rate (Nicholl et al. 16)
 R3source density 1077 — 10> compared to Galactic magnetars (Lu, PB, Kumar 21)

* Rarity favors ‘exotic’ explanation
* G@Galactic ULPM source density

> 10 that for Galactic SGRs — 72 1 Myr disfavored (if B-powered) SGR ?

=~ M81-FRB -
Large compared to periodic FRBs R3
Solutions? P 1
* Special conditions required to make " Tuin(M81-FRB) b
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Main challenge for FRB association - Source densities

e R3 birth rate < 107 3ccSNe rate (Nicholl et al. 16)
 R3source density 1077 — 10> compared to Galactic magnetars (Lu, PB, Kumar 21)

e Rarity favors ‘exotic’ explanation
* Galactic ULPM source density
= 10 that for Galactic SGRs —
Large compared to periodic FRBs
Solutions?

* Special conditions required to make
FRBs from ULPMs

* FRB more beamed than radio pulses?
Requires extremely small inclination
angle and beam (polar cap 6,
= 107 for 16 d period but is such a
low inclination natural?)

* Reduction of sources with very large
period?




Conclusions

Newly discovered Galactic long P radio sources: strong ultra-long period magnetar candidates
Objects close-by = thousands or more in the Galaxy

Source density, Dipole SD, timing stability, offsets and X-ray limit all suggest old ~ Myr ages
Evidence for enhanced spin-down also in confirmed Galactic magnetars

Distinct evolution of magnetic field between magnetars and ULPM candidates

Possible FRB connection — why is the FRB source density so much smaller?



Thank you!



Major astronomical discoveries observed in radio

1933 - Karl Jansky discovers radio waves from Milky Way center

1964 — Penzias and Wilson
discover the Cosmic
Microwave Background

Sixties — First discoveries of quasars and
ro, cron e ST understanding of them as objects outside - ﬁ,ﬁ&a -

it ST Milky Way ~ ~Ses®

1967 — Jocelyn Bell discovers radio pulsars |

ICEPER RS AV OJENIEI&Y A planetary system around the
. - millisecond pulsar PSR1257+12
discovery, orbiting a pulsar

A. Wolszczan® & D. A. Frall!



Unexplored parameter space in radio astronomy

* Radio observations involves trade-offs and compromises:
" fine spectral or fine temporal resolution
" Large coverage area or low limiting flux
= Which bands to observe
= Storage / computational constraints
= Etc.

» Large unexplored parameter space for radio discoveries

Bailes 22
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Obstacles for other models

Precession predictions (zanazzi & Lai 20, Levin et al. 20)

* High temperature -> Young age (challenged by non star-forming environment, Tendulkar et al. 21)

» Significant changes in polarization (but R1 polarization quite stable)

e Underlying shorter period (ruled out for R1, zhang et al. 18)

* Precession inversely related to deformation -> many more FRBs should have longer periods
(and activity might anti-correlate with period) A mm 55 - RA M s
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Obstacles for other models

Shrouded binary predictions (Lyutikov 2020, loka & Zhang 2020)
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Obstacles for other models

Shrouded binary predictions (Lyutikov 2020, loka & Zhang 2020)

* Shrouding preferentially obscures low frequency bursts. In eclipsing pulsars f,, oc v—94
Opposite is observed! sf .

O/ Btype companion ruled out for R3 (Tendulkar et al. 21) |

« DM changes within active phase -> but ADM < 0.1 2=

cm3

* Low frequency spectral cutoff (unobserved)
* Flux modulation with phase (unobserved)
e Underlying shorter period (ruled out for R1, zhang et al. 18)

¢ I_a rge ﬂUCtuatlng RM - —.Apuﬁifl:).?(].\m/
significant depolarization at chnrrs <aom 1179
low frequencies and RM sign

reversal (PB, Kumar & Narayan 22)

we= LOFAR 150 MHz

........................
.......................

Pastor-Marazuella et al. 20




Simplest (most naive) story — long period magnetars

Binarity of FRB progenitors already needed
due to Galactic and M81 FRBs
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Existence of ultra-long period magnetar population (probed by persistent radio or X-ray)
No underlying shorter period associated with spin
ADM independent of period phase

If fallback dominates spindown: association with weaker SNe or more massive progenitors

0¢ 493719\ “eyplis ‘ad ‘Hjedien



Could GLEAM-X be a WD or part of a stellar binary?

One potential counterpart detected by GAIA at offset 0.94”
from radio

However, parallax error suggests it is at d>3kpc and unrelated
to GLEAM-X
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o
o
=1

0.8 : : : 0.4 0.6 0.8 1.0 1.2
Mass (M) Mass (Mg)

10

Distance (kpc)

R and G band limits rule out a
WD at radio position unless it

is extremely old

PB et al. 23



Could GLEAM-X be a WD or part of a stellar binary?

Magnetic WD?

WD can supply observed radio luminosity only for a very short time [EFEs e SOBZRS i Ly s Vo

nEp

. . . . . . . ’2 y _ _
Inconsistent with optical limits and rate of magnetic WD formation & 200B52R32 fon 'L 1.5

Rotation powered WD? General constraints

« Typical B~10°G WD has insufficient spindown power
Lsp K Lp —

one needs B > 101G — orders of magnitude stronger

than most magnetic WD and requires strong Ohmic

dissipation — high temperature — high optical luminosity —

ruled out by observations

(M = 1.2M,)

|0 Spin—down and Radio Energetics
|o Rotational Curvature Pair Cascade Death Line I

 Small duty cycle = strong beaming — relativistic motion
(unnatural from WD surface)

PB et al. 23




Physical mechanisms for enhanced spin-down

Kicks 0 Er %
 Magnetars have complex field structure near surface o,
* Energy ejection by Giant Flare may carry angular momentum 0%
* Flare duration << magnetar spin period ;

D
¢ |AQI~ L 25 1075 Ey 45 f 57 g

S

* Consecutive flares could lead to P «< N for favorable geometry
* Followed by small change in linear momentum: vy y~3 1O3Ef’45,/N5

¢C |8 19 NOY|OIN
|e 19 soleljno34noo




Physical mechanisms for enhanced spin-down

Fallback accretion
e RCW103 —sub-energetic SN remnant: consistent with more fallback

» Fallback accretion alters magnetar evolution by adding rotational energy sink/reservoir and
enhancing spindown by opening up field lines

B,=10" G

Split Monopole Spin-Down
| R =R, (M=M,) |

” Enhanced Dipole Spin-Down"

i

Rough equilibrium between co-
rotation and Alfven radius

Metzger, PB, Giannios 18



Fallback accretion
* P exponentially increases until R,;,~R. and evolves as £36/7

afterwards, where M oc t ¢
* Large { expected for high M RIAFs

* ( cannot be too large to avoid early disk disruption ———————
10710 10" 10° 10" 10° 10
t(yr)

« Maximum period set by time it takes magnetic field to decay

(relative to initial fallback time)
* Accretion can lead to ULPMs under plausible conditions

* Bimodality of magnetar periods can be related to bimodality
in SN properties

10°10°10* 102 10° 10% 10*
PB, Wadiasingh, Metzger 20 t(yr)




Age of ULPM candidates

Both PSR J0901-4046 and GLEAM-X likely old
0.3Myr st < 1Myr

Different formation channel to confirmed magnetars,

but with similar formation rate
Parametrizing B & B*% (colpi et al. 2000), normal

magnetars require —1 S a < 2103yr S t; < 10%yr

ULPM candidates require different a and / or 74

\

D \'\Z.
we¢ “RCW103

gei gtﬁ\ SGRs

\
= \;\"

0'1 GY &

[RCW103

RCW103

PB et al. 23




Possible selection effects — ULPMs favor FRB production

Example — low twist model
* The low-twist model of Wadiasingh & Timokhin associates FRBs with avalanche magnetic pair

production by local field perturbations Dislocation Amplitude & 10° cm
*  Minimum dislocation amplitude « P71 -> .
ULPMs produce more (faint) FRBs than regular magnetars :
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Same population resulting from Monte Carlo simulation
im0 ‘ corresponds to FRB energy distribution in agreement
35 36 37 38 39 10 11 12 13 With periodic FRBS

Log,p Isotropic Equivalent FRB Energy [erg]
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Why so few sources known so far?
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—=- GLEAM-X J162759.5-523504.3 ===+ GLEAM-X J162759.5-523504.3
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 Time domain surveys spend little time in any one point (< 20m) — inhibits ULPMs
detectability prospects

e Current real-time pulse search pipelines recover <0.4 of J0901-4046 SNR (<0.04 for GLEAM-X)
How to correct this?

* Phased array feeds — Increase field of view and effective dwell times
e Search in image domain



Evidence for hundreds of ms periods in two non-repeaters
1. FRB 20191221A - Long duration periodic non-repeating FRB

Long non-repeater with shorter underlying periodicity P~217ms Chime et al. 22
A?valO_4 — Likely rotational period

Energetic considerations suggest magnetar scale field
Rotation powered models practically ruled out

S
\h

PB & Kumar 23



Evidence for hundreds of ms periods in two non-repeaters
2. FRB 20221022A - Magnetospheric emission and polarization angle swing

Scintillation suggests emission from R < 10°cm

R -> . . . .
PA swing -> magnetospheric emission from rotating beam Mckinven et al. 24

2
Radiation from polarcap P = “CZ%va.S S

Energy source must be magnetic
Emitting particles have I' = 400
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A different binary model: FRBs from X-ray binaries

Baryonic outflow model requires only relativistic outflow — can be powered by super-

Eddington accretion (ULX)
Requires short stages of unstable mass-transfer
Host galaxies and spatial offsets consistent

Period is jet precession

® PRIMUS ULX host ¥ FRB host

SFR [M; yr™!]

TR

Sridhar, Metzger, PB et al. 21
[
)k
: M A ~

/%\\ i )2 {], B
<SS
OSS
& Y a
4 dlorb
A
o4 =
i, - R
Ol a c
= i
A S '. p
,/Q '.-é !
/ ol by
- ’-. w
Tw : T'dec
-~ -
Tdec 4 %
¥ ' 4 3
o ad
v 7
Nt > *“'@
Sippn
3 F“g' y
\‘\ ) I‘("ll‘

Predicts

e secular evolution of FRB properties
over months / years
Transient optical/IR counterpart
Association with ULXs




