Rotating pulsar-like compact stars:

the structure and implications

Xiaoyu Lai 来小禹

Hubei University of Education 湖北第二师范学院

@DDF 2024 in Guiyang

Outline

- Introduction: strangeon stars
- EOS: massive and compact strangeon stars
- SSs as the remnants of BNS mergers: implications in short GRBs
- Summary

"Neutron stars": a general name of pulsar-like compact stars

(Li et al. 2018)

×

EoS of pulsars?

- Components: hardons? quarks? others?
- Interactions: non-perturbative QCD!

$$\overline{\rho} = \frac{M}{4\pi R^3 / 3} \simeq 2.4 \rho_0 \quad : \text{Energy scale} \sim 400 \text{ MeV} > m_{\text{strange quark}} c^2$$

Strangeon-strangeon potential

• Lennard-Jones model

$$V(r) = 4U_0[(\frac{r_0}{r})^{12} - (\frac{r_0}{r})^6]$$

(Lai & Xu, 2009)

V (r)

• Yukawa potential with meson coupling

$$V(r) = \frac{g_{\omega H}^2}{4\pi} \frac{e^{-m_{\omega}r}}{r} - \frac{g_{\sigma H}^2}{4\pi} \frac{e^{-m_{\sigma}r}}{r}$$
 (Lai, Gao & Xu, 2013)

EoS

$$V(r) \to \epsilon = \epsilon(n) \to P = P(n)$$

Empirical form of nucleon-nucleon potential (Wilczek, 2007)

Tidal deformability of SSs

Strangeon star model passes *dynamical* test of Λ

- Most of EoS parameters satisfy the constraint of GW170817
- The minimal $\Lambda(1.4)$ is ~ 280 with M_{TOV} ~ 2.9 M_{\odot}
- High-mass strangeon stars could still pass the test of GWs

NS/SS under rigid rotation (in the slow-rotation approximation)

- Along the constant baryonic mass lines, the increases of M_{max} for SSs are more pronounced than that for NSs.
- The shrinkage of an NS/SS during spin-down can lead to the release of gravitational energy.

(Yang et al. 2024)

SSs as the remnants of BNS mergers

- Because M_{TOV} values are high for SSs, the remnants of the BNS mergers would probably be even long-lived.
- During spin-down after merger, the decrease of radius of the remnant will lead to the release of gravitational energy.
- Can the released gravitational energy provide the energy source for the X-ray plateau in the afterglow of short GRBs ?

Why we consider short GRBs?

- A CCSN has a hot and dense envelope surrounding the newborn NS/SS, which would make it difficult for the gravitational energy to be taken out.
- A BNS remnant would have a cleaner environment, so gravitational energy would have chance to be taken away.
- The mass of the remnant $M\sim 2.36~M_{\odot}$.

⁽Yang et al. 2024)

• The magnetic dipole field strength B_p of the remnants in our scenario can be much smaller than that in the magnetar scenario (when the plateau emission is powered only by spindown luminosity of magnetars).

		The efficiency	The efficiency of converting the L_{grav} to the observed L_{X}			
SGRB	$B_p (10^{15} \mathrm{G})$	P_0 (ms)	η_{g}	χ^2 /d. o. f.	$B_p (10^{15} \mathrm{G})$	χ^2 /d. o. f.
051221A	$1.69^{+0.19}_{-0.34}$	$5.29^{+0.63}_{-1.06}$	$0.69^{+0.18}_{-0.25}$	1.1017	10.4 ± 0.9	1.3213
060614	$0.88\substack{+0.13\\-0.13}$	$3.33_{-0.50}^{+0.51}$	$0.11\substack{+0.04\\-0.03}$	1.9674	15.6 ± 0.5	1.0821
061201	$4.17\substack{+0.54 \\ -0.90}$	$2.60\substack{+0.34\\-0.54}$	$0.14\substack{+0.04 \\ -0.05}$	1.2937	20.6 ± 1.5	1.2417
070714B	$8.73^{+1.31}_{-2.04}$	$3.23\substack{+0.50\\-0.75}$	$0.58\substack{+0.19 \\ -0.24}$	2.1809	36.9 ± 4.0	1.9500
070809	$4.98^{+0.80}_{-1.20}$	$10.94^{+1.53}_{-2.58}$	$0.63^{+0.21}_{-0.26}$	1.1828	5.8 ± 1.1	1.2615
090510	$6.40^{+0.86}_{-1.52}$	$2.05_{-0.48}^{+0.28}$	$0.25^{+0.07}_{-0.11}$	1.9234	11.6 ± 0.5	1.1914

(Yang et al. 2024)

(Stratta et al. 2018)

Summary

- Pulsar-like compact stars could be strangeon stars.
- Most of EoS parameters satisfy the constraint of GW170817.
- Strangeon stars as the remnants of the BNS mergers would be even long-lived, and the released gravitational energy could provide an alternative energy source for the X-ray plateau in the afterglow of short GRBs.

Thank you !