Variational equation of state for spin-polarized nuclear matter

Hajime Togashi (Daegu University)

Collaborators: M. Takano (Waseda U.), K. Nakazato (Kyushu U.), K. Sumiyoshi (Numazu C.)

Outline 1 : Introduction 2 : EOS effects on core-collapse supernovae 3 : Variational method for spin-polarized matter 4: Summary

Quarks and Compact Stars 2023 (QCS2023) @ Yangzhou, China, September 23rd, 2023

1. Introduction

Neutron Stars (NS)

- T = 0 MeV, $Y_p \sim 0.1$
- Various EOS has been proposed.

Supernovae / NS mergers

- Wide range of T, $Y_{\rm p}$, $n_{\rm B}$
- Limited number of EOSs are applicable.

Variational EOS table for supernova simulations

Supernova EOS with realistic nuclear forces

(HT, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, and M. Takano, NPA961 (2017) 78)

http://www.np.phys.waseda.ac.jp/EOS/

This is the ONLY microscopic nuclear EOS for astrophysical simulations based on realistic nuclear forces (AV18 + UIX).

Extend to the EOS for spin-polarized nuclear matter to calculate the Neutrino reaction rates in a self-consistent manner

2. EOS effects on core-collapse supernovae

╋

[Uniform phase]

- LS EOS: Skyrme Hartree-Fock
- Shen EOS: Relativistic Mean Field (TM1) +
- Togashi EOS: Variational method (AV18+UIX) +

[Non-uniform phase]

- Compressible Liquid Drop model
- Thomas-Fermi calculation
 - Thomas-Fermi calculation

2. EOS effects on core-collapse supernovae

EOS	$n_0 [{\rm fm}^{-3}]$	E_0 [MeV]	K_0 [MeV]	S_0 [MeV]	L_0 [MeV]	$R_{1.4}$ [km]	$M_{\max}\left[M_{\odot}\right]$
Togashi	0.160	16.1	245	29.1	38.7	11.6	2.21
Shen	0.145	16.3	281	36.9	110.8	14.5	2.23
LS220	0.155	16.0	220	28.6	73.8	12.7	2.06
Empirical	0.15 - 0.17	15.8 - 16.2	220 - 260	28 - 35	35 - 100	11 – 13	> 2.0

Application to core-collapse simulations

1D neutrino-radiation hydrodynamics simulations

(Nakazato, Sumiyoshi & HT, PASJ 73 (2021) 639)

- EOS: Togashi / Shen / LS220 / LS180
- Progenitor model : 9.6 M_{\odot} / 15 M_{\odot} / 30 M_{\odot}
- Neutrino Transport: Directly solve the Boltzmann equation

Neutrino luminosity and average energy

(Nakazato, Sumiyoshi & HT, PASJ 73 (2021) 639)

(Nakazato, Suzuki &HT, PRC 97 (2018) 035804)

Neutrino reactions in supernova simulation

Nuclear weak interactions are also important ingredient for core-collapse simulations.

1. electron-type neutrino absorption on neutrons and its inverse,

 $\nu_e + n \leftrightarrow e^- + p,$

2. electron-type antineutrino absorption on protons and its inverse,

 $\bar{\nu}_e + p \longleftrightarrow e^+ + n,$

3. neutrino scattering on nucleons,

 $\nu + N \longleftrightarrow \nu + N,$

4. neutrino scattering on electrons,

$$\nu + e^- \longleftrightarrow \nu + e^-,$$

5. electron-type neutrino absorption on nuclei,

 $\nu_e + A \longleftrightarrow A + e^-,$

- 6. neutrino coherent scattering on nuclei,
 - $\nu + A \longleftrightarrow \nu + A,$
- 7. electron-positron pair annihilation and creation,

 $e^- + e^+ \longleftrightarrow \nu + \bar{\nu},$

8. plasmon decay and creation,

 $\gamma^* \longleftrightarrow \nu + \bar{\nu},$

9. neutrino bremsstrahlung,

 $N + N' \longleftrightarrow N + N' + \nu + \bar{\nu}.$

We calculate the neutrino scattering reaction rates in a nuclear medium by using the EOS of spin-polarized nuclear matter with the cluster variational method.

Medium effects on neutrino-nucleon scattering

3. Variational method for spin-polarized matter

Nuclear Hamiltonian

AV18 potential: (PRC 51 (1995) 38)

$$V_{ij} = \sum_{t=0}^{1} \sum_{s=0}^{1} [V_{Cts}(r_{ij}) + sV_{Tt}(r_{ij})S_{Tij} + sV_{SOt}(r_{ij})(L_{ij} \cdot s) + V_{qLts}(r_{ij}) |L_{ij}|^2 + sV_{qSOt}(r_{ij})(L_{ij} \cdot s)^2]P_{tsij}$$

UIX potential: (PRL 74 (1995) 4396)

$$V_{ijk} = V_{ijk}^{\rm R} + V_{ijk}^{2\pi}$$

Two-body correlation function

Jastrow wave function

$$\Psi = \operatorname{Sym}\left[\prod_{i < j} f_{ij}\right] \Phi_{\mathrm{F}}$$

Two-body correlation function:

$$f_{ij} = \sum_{t=0}^{1} \sum_{\mu} \sum_{s=0}^{1} \sum_{\nu} \left[f_{Cts}^{\mu\nu}(r_{ij}) + s f_{Tt}^{\mu\nu}(r_{ij}) S_{Tij} + s f_{SOt}^{\mu\nu}(r_{ij}) (\boldsymbol{L}_{ij} \cdot \boldsymbol{s}) \right] P_{tsij}^{\mu\nu}$$

t: Total isospin μ : 3rd component of *t* s : Total spin ν : 3rd component of *s*

 E_2/N is the expectation value of H_2 in the two-body cluster approximation.

$$\frac{E_3}{N} = \frac{1}{N} \langle \sum_{i < j < k}^{N} \left[\alpha V_{ijk}^{\text{R}} + \beta V_{ijk}^{2\pi} \right] \rangle_{\text{F}} + \gamma n_{\text{B}}^2 e^{-\delta n_{\text{B}}} \left[1 - (1 - 2Y_{\text{p}})^2 \right]$$
Modified expectation value of H_3 with Φ_{F}
Correction term

Total energy per nucleon $E/N = E_2/N + E_3/N$

Comparison with the AFDMC method

AFDMC: Auxiliary Field Diffusion Monte Carlo method

AFDMC: L.Riz, S. Gandolfi, and F. Pederiva., J. Phys. G 47 (2020) 0245106)

Energy per particle for spin-polarized matter

Spin-susceptibility for Pure Neutron Matter

Axial response function for pure neutron matter

⁽C. J. Horowitz et al., PRC 95 (2017) 025801)

Summary

We extend the variational EOS based on realistic nuclear forces (AV18 + UIX) to calculate the thermodynamic quantities for spin-polarized nuclear matter.

 \rightarrow The obtained spin susceptibility is applied to calculations for the neutrino-nucleon scattering rates in a consistent manner.

- Energy for fully spin-polarized matter is in good agreement with the results by AFDMC.
- The obtained axial response function is reduced by nuclear medium effect.

Future Plans

- Systematic study of the axial response function for asymmetric matter
- Supernova simulations with the obtained neutrino-nucleon scattering cross sections