

Quarks and Compact Stars (QCS2023) Sept. 22-26, 2023, Yangzhou

The equations of state of compact star from machine learning

Jinniu Hu (胡⾦⽜) School of Physics, Nankai University

hujinniu@nankai.edu.cn

11/20/13 23/09/2023 Jinniu Hu

! **Introduction**

- ! **The hadron-quark crossover from Gaussian Process**
- ! **The EOS of neutron star from deep neural network**
- ! **The phase transitions from DNN**
- ! **Summary**

The radii and masses

Shapiro delay measurement

The massive neutron star PSR J1614-2230 (1.928±0.017 M⊙**), P. B. Demorest, et al., Nature. 467(2010)108 E. Fonseca et al., Astrophys. J. 832, 167 (2016). PSR J0348+0432 (2.01±0.04 M**⊙**), P. J. Antoniadis et al., Science 340, 1233232 (2013). PSR J0740+6620 (2.08±0.07 M**⊙**) H. T. Cromartie et al., Nat. Astron. 4, 72 (2020) M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 PSR J0952+0607 (2.35±0.17 M**⊙**) R. W. Romani et al. Astrophys. J. Lett. 934(2022)L17**

Neutron Star Interior Composition Explorer

The NICER Measurement PSR J0740+6620 (2.08±0.07 M⊙**,**

 12.35±0.75 km) H. T. Cromartie et al., Nat. Astron. 4, 72 (2020) M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 PSR J0030+0451 (1.44±0.15M⊙**,**

 13.02±1.24 km) M. C. Miller et al. Astrophys. J. Lett. 887(2019)L42

23/09/2023 Jinniu Hu 3

The data of neutron star

闭

D. Farrell, et al. J. Cosm. Astro. Phys. 2(2023)016

Jinniu Hu

➢ **Parametric Bayesian inference**

 F. Özel, G. Baym, and T. Güver, Phys. Rev. D 82 (2010) 101301(R) A. W. Steiner, J. M. Lattimer, and E. Brown, Astrophys. J 722(2010)33 D. Alvarez-Castillo, et al. Eur. Phys. J. A 52 (2016) 69 Z. Miao, J. L. Jiang, A. Li, and L. W. Chen, Astrophys. J. Lett. 917 (2021) L22

➢ **Nonparametric Bayesian inference P.Landry and R. Essick, Phys. Rev. D 99 (2019) 084049**

 P.Landry, R. Essick, and K. Chatziioannou, Phys. Rev. D 101 (2020) 123007 M. Han, J. Jiang, S. Tang, Y. Fan, Astrophys. J. 919 (2021) 11

➢ **Support Vector Machine P. Magierski and P. H. Heenen, Phys. Rev. C 65(2002)045804**

➢ **Deep neutral network Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019**

 Y. Fujimoto, K. Fukushima, K. Murase, JHEP, 2021 (2021) 1

 D. Farrell, et al. J. Cosm. Astro. Phys. 2(2023)016

 L. Guo, J. Xiong, Y. Ma, Y. Ma, arXiv:2309.11227

……

! **Introduction**

- ! **The hadron-quark crossover from Gaussian Process**
- ! **The EOS of neutron star from deep neural network**
- ! **The phase transitions from DNN**
- ! **Summary**

Quark-Hadron pasta phase

2. CONSTRUCTION: Red. 2. CONSTRUCTION: RED : quark matter
2. CONSTRUCTION: $BLUE$: hadron matt BLUE: hadron matter

Maxwell Gibbs 3-Window

- Clear phase boundary.
- No mix phase.

- Clear phase boundary.
- With mix phase.

• No clear phase boundary

Courtesy from Bai Zhan's slide

23/09/2023 Jinniu Hu 8

exist at present, we will consider a phenomenological "interpolation" between the H-EOS and $t_{\rm B}$ is always uniform of each phase. In our case \sim $\frac{W}{\sqrt{W}}$ *µ*_{*N*} α ^{*N*}_{*c*} \sim $\frac{1}{\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac$

The Gaussian process in 3-windows \mathbb{R} as a first step . Such an interpretation is certainly not unique: Here we consider the constant of \mathbb{R} simplest possibilities, *P*-interpolation and "-interpolation as described below. **The Gaussian process in 3-windows** (KAN) 4 3 given baryon density. the dominant pairing in the quarkyonic matter is, instead of α not operations do not over α over α of the stiffe of the state sta $\lim_{n \to \infty} \frac{1}{n}$ iii s-windows $\lim_{n \to \infty} \frac{1}{n}$

The Pressure interpolated method FRESSUTE INTETPOLATED METHOD
F. Baym. et al., Rep. Prog. Phys. 8 $\overline{}$ chiral participations of the pairs of the condensation condensities and condensities and chi-
Condensation condensations condensations and condensations condensations and chiconstruction (see !gure 14 and related discussion above) are a interpolated method α unit-unitation. Furthermore, the unit-**Edge construction can encompass 12018)056902**
G. Baym, et al., Rep. Prog. Phys. 81(2018)056902

 $P(\rho)$ = $P_H(\rho)w_-(\rho) + P_Q(\rho)w_+(\rho),$ (400) $w_{\pm}(\rho) = \frac{1}{2}$ $\bigg(1 \pm \tanh\left(\frac{\rho - \bar{\rho}}{\Gamma}\right)$ $\binom{2}{2}$, $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\mathbf{E}(\lambda)$ *P* $= \frac{1}{2} (1 \pm i)^2$ $\left(1 \pm \tanh\left(\frac{\rho-\rho}{\Gamma}\right)\right), \qquad \begin{array}{c} \frac{\varepsilon}{8} \\ \frac{\varepsilon}{8} \\ \frac{\varepsilon}{2} \end{array} \qquad \qquad \begin{array}{c} \end{array}$ (0) , $(400 - 400)$ $P(\rho$ $\overline{2}$ $P_H(\rho)w_-(\rho)+P_Q(\rho)w_+(\rho), \hspace{1cm}$ 400). And $\hspace{0.1cm} \left.\begin{matrix} \rho\end{matrix}\right\}$ equation of $\left(\rho-\bar{\rho}\right)$ is the state of $\left(\rho-\bar{\rho}\right)$ $r=\frac{1}{2} \left(1 \pm \tanh \left(\frac{\pi}{\Gamma}\right)\right), \qquad \frac{1}{2} \left(1 \pm \frac{1}{2} \right)$

The energy interpolated method where **P***P* and **P***N* and *N* and the matter and the matter and the matter and the quark matter and the quark matter and the quark matter and the set of the se $\mu = \mu_{BL}$ $\mu' = \mu_{BL}$ $\mu' = \mu_{BL}$ *N*

$$
\varepsilon(\rho) = \varepsilon_H(\rho) w_-(\beta) + \varepsilon_Q(\rho \frac{\partial w_+}{\partial \rho_+}(\rho) + \Delta \varepsilon \qquad g(\rho) = \frac{2}{\Gamma} (\varepsilon^X + e^{-X})^{-2},
$$

\n
$$
\Delta \varepsilon = \rho \int_{\bar{\rho}}^{\rho} (\varepsilon_H(\rho \theta) + \varepsilon_Q(\rho \theta)) \frac{g(\rho')}{\rho'} d\rho' \qquad \eta_{\mathbf{X}}(\mu_{\mathbf{BL}}) \frac{\rho \cdot 2\eta}{\Gamma}.
$$

P 2 2 高

("*H*(⇢⁰

) "*Q*(⇢⁰

and is shown by the shaded area on the horizontal axis. The filled circles denote the onset \sim strangeness degrees of \sim strange \sim strang **THE SUPERING STATE INTERACTION CONTROL** $\mathbb{E}[\mathbb{$ $\mathcal{L}(\mathcal{L}(\mathcal{A}) \setminus \mathcal{A})$ is not the asymptotic form of the asymptotic form of the $\mathcal{L}(\mathcal{A})$ **P(** $\frac{1}{2}$) and $\frac{1}{2}$. Therefore, naive extrapolation of H-EOS and $\frac{1}{2}$ their application would miss essential physics. To see the sti \mathcal{L}

The chemical potential interpolated method construction. The hadronic equation of state is used only at $\overline{}$ ine chemi l notantial internalated method i. Poloninal linoi polatoa

$$
\mathcal{P}(\mu_{\text{BL}}) = P_{\text{H}}(\mu_{\text{BL}}), \frac{\partial \mathcal{P}}{\partial \mu_{\text{B}}}\Big|_{\mu_{\text{BL}}} = \frac{\partial P_{\text{H}}}{\partial \mu_{\text{B}}}\Big|_{\mu_{\text{BL}}} , \dots
$$

$$
\mathcal{P}(\mu_{\text{BU}}) = P_{\text{Q}}(\mu_{\text{BU}}), \frac{\partial \mathcal{P}}{\partial \mu_{\text{B}}}\Big|_{\mu_{\text{BU}}} = \frac{\partial P_{\text{Q}}}{\partial \mu_{\text{B}}}\Big|_{\mu_{\text{BU}}}, \dots
$$

23/09/2023 Jinniu Hu 9 which guarantees the thermodynamic consistency. Note that the energy per baryon from th $\frac{1}{2}$ baryons. rB − 0.5 **fm, document** perco

Jinniu Hu a matter of choice. Matter of choice. Matter of choice. Matter of choice. \mathcal{A}

 $\frac{18}{12}$

, (4.6)

The Gaussian process

周大學

Assume the function to satisfy Assume that: **Assume the function** K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 935(2022)88 $\mathcal{F}(\mathcal{L})$ is a function with the following properties, $\mathcal{L}(\mathcal{L})$ $\mathcal{L}(\mathcal{L})$ $\mathcal{L}(\mathcal{L})$ $y = f(x)$.

To satisfy
\n
$$
\begin{bmatrix} f(x_1) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu(x_1) \\ \mu(x_2) \\ \vdots \\ \mu(x_n) \end{bmatrix}, \begin{bmatrix} \kappa(x_1, x_1) & \kappa(x_1, x_2) & \dots & \kappa(x_1, x_n) \\ \kappa(x_2, x_1) & \kappa(x_2, x_2) & \dots & \kappa(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \kappa(x_n, x_1) & \kappa(x_n, x_2) & \dots & \kappa(x_n, x_n) \end{bmatrix} \right)
$$
\nThe

observation data is *f*(*xn*) *µ*(*xn*) **The observation data is** \mathcal{H} to do inference with the Gaussian process? *•* Observed data:

$$
(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \cdots, (\mathbf{x}_n,y_n)
$$

For simplicity we will use *µ* = 0. The prediction value of f is

$$
\begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} \kappa(x_1, x_1) & \kappa(x_1, x_2) & \dots & \kappa(x_1, x_n) \\ \kappa(x_2, x_1) & \kappa(x_2, x_2) & \dots & \kappa(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \kappa(x_n, x_1) & \kappa(x_n, x_2) & \dots & \kappa(x_n, x_n) \end{bmatrix} \begin{bmatrix} \kappa(x_1, x_2) \\ \kappa(x_2, x_3) \\ \vdots \\ \kappa(x_n, x_n) \end{bmatrix} \right)
$$

23/09/2023 Jinniu Hu 10

∪ Inniu *K*(X*,* X) *K*(*x*?*,* X)

It can be use the matrix notation *f*(*x*⇤) 0 (*x*⇤*, x*1) (*x*⇤*, x*2) *...* (*xn, x*⇤) (*x*⇤*, x*⇤) It can be use the matrix notation

$$
\begin{bmatrix} \mathbf{y} \\ f(x_{\star}) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{0} \\ 0 \end{bmatrix}, \begin{bmatrix} K(\mathbf{X}, \mathbf{X}) & K(x_{\star}, \mathbf{X}) \\ K(\mathbf{X}, x_{\star}) & K(x_{\star}, x_{\star}) \end{bmatrix} \right)
$$

where the mean function is zero for notational simplicity. The distribution of prediction point can be obtained

 $f(x_{\star})$ | $\mathbf{v} \sim \mathcal{N}$ | $K(x_{\star}, \mathbf{X})K(\mathbf{X}, \mathbf{X})$ $^{-1}\mathbf{v}$, $K(x_{\star}, x_{\star}) - K(x_{\star}, \mathbf{X})K(\mathbf{X}, \mathbf{X})$ $^{-1}K(\mathbf{X}, x_{\star})$ | $f(x_{\star}) | \mathbf{y} \sim \mathcal{N} \left(K(x_{\star}, \mathbf{X}) K(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}, K(x_{\star}, x_{\star}) - K(x_{\star}, \mathbf{X}) K(\mathbf{X}, \mathbf{X})^{-1} K(\mathbf{X}, x_{\star}) \right)$

The Hadron and Quark phases 2014 a), the nucleons interact with each other by exchanging \mathbf{r} ron and Quark phases vector-isovector meson meson $\overline{}$

1

1

1

The Lagrangian of Hadron phase \blacksquare interaction between the unit is involved in and ρ mesons is involved in and ρ **2 Lagrangian of He** $\overline{}$ n of H Lagrangia 4 agrangian of Hadi

P arangian of Quark phase the state $\frac{1}{3}$ The Lagrangian of Quark phase \cup

$$
\mathcal{L}_{\text{NJL}} = \overline{q}(i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\overline{q}\lambda_{a}q)^{2} \qquad \sum_{\substack{\delta \in \mathbb{Z} \\ \delta \geq 2 \\ \Delta \epsilon}}^{R} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\overline{q}\lambda_{a}q)^{2} \qquad \sum_{\substack{\delta \in \mathbb{Z} \\ \delta \geq 1 \\ \Delta}}^{R} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\overline{q}\lambda_{a}q)^{2} \qquad \sum_{\substack{\delta \in \mathbb{Z} \\ \delta \geq 1 \\ \Delta}}^{R} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\overline{q}\lambda_{a}q)^{2} \qquad \sum_{\substack{\delta \in \mathbb{Z} \\ \delta \geq 1}}^{R} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\overline{q}\lambda_{a}q)^{2} \qquad \sum_{\substack{\delta \in \mathbb{Z} \\ \delta \geq 1}}^{R} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\overline{q}\lambda_{a}q)^{2} \qquad \sum_{\substack{\delta \in \mathbb{Z} \\ \delta \geq 1}}^{R} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\overline{q}\lambda_{a}q)^{2} \qquad \sum_{\substack{\delta \in \mathbb{Z} \\ \delta \geq 1}}^{R} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\overline{q}\lambda_{a}q)^{2} \qquad \sum_{\substack{\delta \in \mathbb{Z} \\ \delta \geq 1}}^{R} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\overline{q}\lambda_{a}q)^{2} \qquad \sum_{\substack{\delta \in \mathbb{Z} \\ \delta \geq 1}}^{R} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{
$$

() *m c gg g g* 2 , *n p* 3 v *X X XS S S*  -  *X X S X* together with the current quark mass matrix m = diag(mu, md, *S* l<mark>ang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 935(2</mark>02 $\sum_{i=1}^n$ is $\sum_{i=1}^n$ and $\sum_{i=1}^n$ order, $\sum_{i=1}^n$ superpose of K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 935(2022)88 _{or [fm⁻³]}

2

m gg

2

 $\mathcal{L} = \mathbf{I}$ $\mathcal{L} = \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L}$ $\frac{1}{2}$ () $\frac{1}{2}$ () $\frac{1}{2}$ () $\frac{1}{2}$ *qi mq G q q qi q G q q Kq q q q* det 1 det 1 , *a V* r. *L* – 70
D. *C* – *C* \sim 2 \sim 2 \sim 5 5 5 5 5 6 *H M HM H H H* $\frac{1}{2}$ $\mathcal{L} = \mathcal{L} \left(\mathcal{L} \right)$ アンディー アール・エンジン where \mathcal{N} is the quark field with the flavors and three colors and the colors and three colors and the colors and three colors and three colors and to gether with the current \mathcal{U} . The term relation of \mathcal{L} $\mathcal{U}^{\mathcal{I}}$ are the Gell–Mann matrices with \mathcal{I} $M²$ $\frac{1}{2}$ tional vector and axial-vector interactions to produce universal \mathcal{L} $r = 0.2$ and $r = 0.6$ are $r = 31$ and $r =$ \overline{P} and \overline{P} and ,
।
। $\mathcal{N} = \mathcal{N}$ () and () a $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ 300 \uparrow GPR ⎜ ⎟ ⎠ ⎝ *S* \rightarrow S $300 \frac{L}{L}$ GPR $\sum_{i=1}^{\infty}$ **F** the symmetry is $\sum_{i=1}^{\infty}$ \overline{a} 150 \overline{b} 150 \overline{d} 150 ence the \mathbb{Z} is linearly correlated with the neutron skinned with the neutron skinned sk \mathcal{D} of 208Pb. However, the uncertainty in the presentation in the presentation in the presentation in the presentation of \mathcal{D} measurements, \mathcal{L} $2\sqrt{2\pi\epsilon^2}$, and the slope inferrent use $2\sqrt{2\epsilon}$ neutron-rich systems, several new parameter systems, several new parameter sets based on the system of the system on the system of the sys

23/09/2023 Jinniu Hu 12 23/09/2023 **Jinniu Hu Modern proportional to GV introduces and proportional to GV international to GV i**

 $v_{\rm c}$ mesons, including the scalar-isoscalar mesons, including the scalar-isoscalar meson (σ

The speed of sound

The M-R relations of neutron star

! **Introduction**

- ! **The hadron-quark crossover from Gaussian Process**
- ! **The EOS of neutron star from deep neural network**
- ! **The phase transitions from DNN**
- ! **Summary**

Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019

23/09/2023 Jinniu Hu 17 dependent in the calculation of the calculation process from the calculation process from the calculation proc
Tinnius the calculation process from the calculation process from the calculation process from the calculation \bullet left with input fixig to the right with output for \bullet . The right with output fyig. \mathbf{b} fixed \mathbf{b}

 \mathbf{r}

in the contract of the contract of the final output from the final output from the contract of the L-th layer. The contract of Jinniu Hu

The representation of EOS $\qquad \qquad \mathbb{R}^n$

The spectral representation M Z_{low} T N μ , V Z_{long} and μ shan Astrophys T $0.50(2023)194$ W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 950(2023)186
A**tation** \mathcal{L} small set of basis functions. In contrast, we are the small set of basis functions. In contrast, we are the small set of \mathcal{L}

 $\phi = \log \left(c^2 \frac{d\varepsilon}{dn} \right)$ $\frac{dE}{dp} - 1$ \sum $\phi = \phi(\log p)$
by $\phi = \phi(\log p)$ \setminus dp \setminus

 $1 + e^{\phi}$

$$
\phi = \phi(\log p)
$$

 $\int_0^t 1 + e^{\phi}$

 nd and d in \mathsf **and**

^ðσðα^Þ

; lðα^Þ

The training data

6 **W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 950(2023)186**

Figure 2. The generation range of -ln *p*. We will randomly

⁴³⁰ tron stars less than 2*.*2*M* and the *M*-*R* relations that $\overline{}$

The EOSs from the neural network ne cubs from the neural 4 40 August 2014 12:00 PM rne neural network

blom 2010). The EOS parameters of the prior

角

The mass-radius relation <u>sa scheme for the training series</u> \mathbf{F} ₁₈ of present framework is independent of the generation $\overline{}$ ing the training straining data.

 $\mathcal{S}_{\mathcal{S}}$ but in the final results of observables. This shows that the final results is shown that the final results is

 $\mathbf{S}(\mathbf{S})$ but in the final results of observables. This shows that the final results is shown that the final results is

The tidal deformability

23/09/2023 Jinniu Hu 22 nonparametric machine learning method, the observation

and compared to that from DDME1 and the values extracted to the values extracted to the values extracted to \sim

! **Introduction**

- ! **The hadron-quark crossover from Gaussian Process**
- ! **The EOS of neutron star from deep neural network**
- ! **The phase transitions from DNN**
- ! **Summary**

N piecewise polytropes representation

$$
p = K_i \varepsilon^{\Gamma_i} \quad (\varepsilon_{i-1} < \varepsilon < \varepsilon_i)
$$

The pressure values at the ith segment boundaries, p_i, are **read as**

$$
p_i = p_{i-1} + c_{s,i}^2 (\varepsilon_i - \varepsilon_{i-1}),
$$

c is the average speed of sound \boldsymbol{c} *c* is the average speed of sound

$$
\langle c_s^2 \rangle \equiv \int_{\varepsilon_{i-1}}^{\varepsilon_i} \frac{d\varepsilon}{\varepsilon_i - \varepsilon_{i-1}} c_s^2 = \int_{\varepsilon_{i-1}}^{\varepsilon_i} \frac{d\varepsilon}{\varepsilon_i - \varepsilon_{i-1}} \frac{\partial p}{\partial \varepsilon}
$$

$$
= \frac{1}{\varepsilon_i - \varepsilon_{i-1}} \int_{p_{i-1}}^{p_i} dp = \frac{p_i - p_{i-1}}{\varepsilon_i - \varepsilon_{i-1}} = c_{s,i}^2.
$$

y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019

23/09/2023 Jinniu Hu 24

 J *inniu* Hu

The speeds of sound from DNN

FIG. 4: **W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, in preparation**

23/09/2023 Jinniu Hu 25

The EOS including the phase transition

FIG. 2: **W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, in preparation**

23/09/2023 Jinniu Hu 26

团大

FIG. 3: **W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, in preparation**

23/09/2023 Jinniu Hu 27

阖大

! **Introduction**

- ! **The hadron-quark crossover from Gaussian Process**
- ! **The EOS of neutron star from deep neural network**
- ! **The phase transitions from DNN**

! **Summary**

副大.

The hadron-quark crossover in neutron star was investigated by the Gaussian process

The nonparametric deep neural network with Gaussian process was applied to extract the equation of state of neutron star from the observations

The first-order hadron-quark phase transition was preliminarily discussed with deep neural network

The physics-informed neural networks will be considered.

Thank you very much for your attention!

Bayesian inference To determine the most likely EoS, we can use the most likely EoS, we can use the MAP in the MAP in the MAP is t
The MAP is the MAP is produce informed D $\overline{}$ tional distribution, Proposition, Proposition, Proposition, Proposition, Proposition, Proposition, P

$$
f_{\text{MAP}}(\mathcal{D}) = \underset{\boldsymbol{\theta}}{\text{arg max}}[\Pr(\boldsymbol{\theta}) \Pr(\mathcal{D}|\boldsymbol{\theta})].
$$

$T_{\rm{max}}$ be interpreted as a and approximation of ϵ Neural network: minimize **Meural**

$$
L[f] = \langle \ell[f] \rangle = \int d\theta d\mathcal{D} \Pr(\theta) \Pr(\mathcal{D}|\theta) \ell(\theta, f(\mathcal{D})).
$$

Neural network allows for more general choice of loss functions Bayesian inference assumes parametrized likelihood functions. is assumed to be Proposed to be posterior EoS distr
The posterior EoS distribution is a posterior EoS distribution is a posterior experimental to be proposed to b

[4] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001