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The radii and masses
Neutron Star Interior Composition Explorer

The NICER Measurement 
PSR J0740+6620 (2.08±0.07 M⊙, 

                              12.35±0.75 km) 
H. T. Cromartie et al., Nat. Astron. 4, 72 (2020)  
M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 

PSR J0030+0451 (1.44±0.15M⊙, 

                              13.02±1.24 km)  
M. C. Miller et al. Astrophys. J. Lett. 887(2019)L42

Shapiro delay measurement

The massive neutron star 
PSR J1614-2230 (1.928±0.017 M⊙),       
P. B. Demorest, et al., Nature. 467(2010)108 
E. Fonseca et al., Astrophys. J. 832, 167 (2016).   

PSR J0348+0432 (2.01±0.04 M⊙),  
 P. J. Antoniadis et al., Science 340, 1233232 (2013). 

PSR J0740+6620 (2.08±0.07 M⊙) 
H. T. Cromartie et al., Nat. Astron. 4, 72 (2020)  
M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 

PSR J0952+0607 (2.35±0.17 M⊙) 
R. W. Romani et al. Astrophys. J. Lett. 934(2022)L17
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low-spin case and (1.0, 0.7) in the high-spin case. Further
analysis is required to establish the uncertainties of these
tighter bounds, and a detailed studyof systematics is a subject
of ongoing work.
Preliminary comparisons with waveform models under

development [171,173–177] also suggest the post-
Newtonian model used will systematically overestimate
the value of the tidal deformabilities. Therefore, based on
our current understanding of the physics of neutron stars,
we consider the post-Newtonian results presented in this
Letter to be conservative upper limits on tidal deform-
ability. Refinements should be possible as our knowledge
and models improve.

V. IMPLICATIONS

A. Astrophysical rate

Our analyses identified GW170817 as the only BNS-
mass signal detected in O2 with a false alarm rate below
1=100 yr. Using a method derived from [27,178,179], and
assuming that the mass distribution of the components of
BNS systems is flat between 1 and 2 M⊙ and their
dimensionless spins are below 0.4, we are able to infer
the local coalescence rate density R of BNS systems.
Incorporating the upper limit of 12600 Gpc−3 yr−1 from O1
as a prior, R ¼ 1540þ3200

−1220 Gpc−3 yr−1. Our findings are

consistent with the rate inferred from observations of
galactic BNS systems [19,20,155,180].
From this inferred rate, the stochastic background of

gravitational wave s produced by unresolved BNS mergers
throughout the history of the Universe should be compa-
rable in magnitude to the stochastic background produced
by BBH mergers [181,182]. As the advanced detector
network improves in sensitivity in the coming years, the
total stochastic background from BNS and BBH mergers
should be detectable [183].

B. Remnant

Binary neutron star mergers may result in a short- or long-
lived neutron star remnant that could emit gravitational
waves following the merger [184–190]. The ringdown of
a black hole formed after the coalescence could also produce
gravitational waves, at frequencies around 6 kHz, but the
reduced interferometer response at high frequencies makes
their observation unfeasible. Consequently, searches have
been made for short (tens of ms) and intermediate duration
(≤ 500 s) gravitational-wave signals from a neutron star
remnant at frequencies up to 4 kHz [75,191,192]. For the
latter, the data examined start at the time of the coalescence
and extend to the end of the observing run on August 25,
2017. With the time scales and methods considered so far
[193], there is no evidence of a postmerger signal of

FIG. 5. Probability density for the tidal deformability parameters of the high and low mass components inferred from the detected
signals using the post-Newtonian model. Contours enclosing 90% and 50% of the probability density are overlaid (dashed lines). The
diagonal dashed line indicates the Λ1 ¼ Λ2 boundary. The Λ1 and Λ2 parameters characterize the size of the tidally induced mass
deformations of each star and are proportional to k2ðR=mÞ5. Constraints are shown for the high-spin scenario jχj ≤ 0.89 (left panel) and
for the low-spin jχj ≤ 0.05 (right panel). As a comparison, we plot predictions for tidal deformability given by a set of representative
equations of state [156–160] (shaded filled regions), with labels following [161], all of which support stars of 2.01M⊙. Under the
assumption that both components are neutron stars, we apply the function ΛðmÞ prescribed by that equation of state to the 90% most
probable region of the component mass posterior distributions shown in Fig. 4. EOS that produce less compact stars, such as MS1 and
MS1b, predict Λ values outside our 90% contour.
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Figure 4

The combined constraints at the 68% confidence level over the neutron star mass and radius obtained from
(Left) all neutron stars in low-mass X-ray binaries during quiescence (Right) all neutron stars with
thermonuclear bursts. The light grey lines show mass-relations corresponding to a few representative
equations of state (see Section 4.1 and Fig. 7 for detailed descriptions.)

(Guillot et al. 2013; Guillot & Rutledge 2014; Lattimer & Steiner 2014; Özel et al. 2015). The most

recent results are displayed as correlated contours on the neutron-star mass-radius diagram4 (see
Fig. 4).

Several sources of systematic uncertainties that can affect the radius measurements have been

studied, which we discuss in some detail below.

Atmospheric Composition. The majority of qLMXBs for which optical spectra have been ob-
tained show evidence for Hα emission (Heinke et al. 2014), indicating a hydrogen rich companion.

Although none of these spectra have been obtained for globular cluster qLMXBs, assuming that
sources in globular clusters have similar companions to those in the field led to the use of hydrogen

atmospheres when modeling quiescent spectra. There is one source among the six that have been

analyzed in detail, for which there is evidence to the contrary. There is only an upper limit on the
Hα emission from the qLMXB in NGC 6397 using HST observations (Heinke et al. 2014). Because

of this, this source has been modeled with a helium atmosphere and the corresponding results are

displayed in Fig. 4.

Non-thermal Component. Assuming different spectral indices in modeling the none-thermal

spectral component also has a small effect on the inferred radii (Heinke et al. 2014). The low

counts in the spectra do not allow an accurate measurement of this parameter; however, a range of
values have been explored in fitting the data.

Interstellar Extinction. Because of the low temperature of the surface emission from qLMXBs,

the uncertainty in the interstellar extinction has a non-negligible effect on the spectral analyses. Dif-
ferent amounts of interstellar extinction have been assumed in different studies (Guillot et al. 2013;

Lattimer & Steiner 2014). A recent study explored different models for the interstellar extinction

4The full mass-radius likelihoods and tabular data for these sources can be found at
http://xtreme.as.arizona.edu/NeutronStars.
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PSRJ0030+0451 (see below) when analyzing the pulse
waveform of this pulsar.

4.2. Analysis of Synthetic Waveforms Generated Using Two
Uniform Oval Spots

The second analysis of synthetic data we present here shows
the results we obtained by fitting a 14-parameter waveform
model with two possibly different and overlapping uniform
oval spots to a synthetic waveform generated assuming two
different, non-overlapping uniform oval spots, using our MN
+PT-emcee sampling algorithm. Table 4 lists the values of the
waveform parameters that we assumed when we generated the
synthetic waveform data.

The results that we obtained by fitting this waveform model
to the synthetic waveform data in NICER energy channels
25–299 and 40–299 are shown in Table 4, which lists the
median value of each model parameter computed using its 1D
posterior probability distribution and the boundaries of the ±1σ
and ±2σ credible intervals for each parameter.

We found that when the model waveform was fit to the
synthetic waveform data in NICER energy channels 25–299,
the values of10 of the14 parameters assumed in generating
the synthetic waveform are within the ±1σ credible intervals
for these parameters, the values assumed for threeothers are
within the relevant ±2σ credible intervals, and the value
assumed for the remaining parameter is within the relevant
±3σ credible interval. When this model waveform was fit only
to the synthetic data in NICER energy channels40–299, the
assumed values of12 of the14 parameters fall within their
±1σ credible intervals and the assumed values of the other two
parameters fall within their ±2σ credible intervals. The
waveform parameter values that were assumed when generat-
ing the synthetic waveform data are all consistent with the 1D
posterior probability densities obtained by analyzing the data
using either energy cut. These results are summarized in
Table 5.

Figure 3 shows that the joint probability density distribution
for M and Re obtained by fitting this model to the synthetic
waveform data in NICER energy channels 25–299, and by
fitting it to the synthetic data in channels 40–299, are both
consistent with the values of the stellar mass and radius
assumed when the synthetic data was generated. Figure 3 also
demonstrates that discarding the data in NICER energy
channels 25–39 does not significantly degrade the precision
of the M and Re estimates.

The panels in the top row of Figure 4 show the 1D
probability distributions of M, Re, and D obtained by fitting this
model to the synthetic waveform using the data in NICER

energy channels25–299, whereas the panels in the bottom row
show the results obtained using only the data in energy
channels40–299. We note several aspects of these
distributions.
First, these 1D probability distributions are consistent with

each other and with the values of M, Re, and D that were
assumed in generating the synthetic waveform. Second, these
distributions are not significantly affected by using only the
data in energy channels40 and above. Finally, although the 1D
probability distributions for D obtained by fitting this model to
these data are consistent with the value of D assumed in
generating the synthetic waveform (the cumulative probability
near the assumed value of D is substantial for both energy cuts
and fits with wider priors show that the probability density
eventually decreases with increasing distance), waveform
analysis again does not determine D very precisely. This
further emphasizes the value of using the precise and accurate
independent measurement of D (see below) when analyzing the
NICER waveform data on PSRJ0030+0451.

5. Analysis of the NICER Pulse Waveform Data

In this section we describe our estimation of the radius and
mass of PSRJ0030+0451 using NICER observations of its soft
X-ray pulse waveform. We first describe our modeling of this
waveform and detail the basis for our decision to use the data in
NICER energy channels 40–299. We then present our radius
and mass estimates, and the evidence for the validity of
the model that we used to make these estimates. Finally, we

Table 5
Verification of Fits to Synthetic Data Generated by Two Oval Spots

Energy Channels ±1σ (68.3%) ±2σ (95.4%) ±3σ (99.7%)

25–299 10 13 14

40–299 12 14 14

Note. The number of values of the waveform parameters assumed in generating
the synthetic waveform that are within the indicated 1D credible intervals
derived from our fit of the 14-parameter waveform model with two possibly
different and overlapping oval spots to the synthetic waveform generated
assuming two different, non-overlapping oval spots, using the data in the
indicated energy channels.

Figure 3. Plot of the 68% (inner) and 95% (outer) contours of the joint
probability density distribution of M and Re obtained by fitting a model
waveform with two possibly different and overlapping uniform oval hot spots
to a synthetic waveform that assumed two different, non-overlapping uniform
oval spots. The solid black lines show the contours obtained when the synthetic
waveform data in NICERenergy channels 25–299 were used, whereas the
dashed blue lines show the contours obtained when the synthetic waveform
data in energy channels 40–299 were used. Both joint probability distributions
are consistent with the M and Re values assumed when the synthetic data were
generated, which are indicated by the star. These results show that using only
the data in energy channels 40–299 neither biases the M and Re estimates nor
significantly reduces their precisions.
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The Astrophysical Journal Letters, 887:L24 (28pp), 2019 December 10 Miller et al.
A strangely light neutron star 5

Fig. 1 Equation of state predictions and observational constraints, as a function of the
radius and mass of the compact star. The contours show mass and radius constraints for
PSR J0740+6620 and PSR J0030+0451 reported by [26, 27] based on the NICER data, and
for CCO in HESS J1731-347 obtained in this work. Here, the thick solid line corresponds to
the case when only parallax priors and X-ray data are considered, whereas the thick dashed
lines correspond to the joint fit including all prior information as discussed in the text. All
contours are plotted for the same 68.3 and 95.4% confidence levels. The collection of thin
black lines represents the family of chiral EOSs considered by [22, 23], with red lines on
top indicating the EOSs that are allowed by the combined analysis of priors by [26, 27],
constrains based on the analysis of X-ray bursts from 4U 1702-429 by [24], and this work
(90% confidence). Two representative strange quark matter (SQM) EOSs are also plotted
for completeness (red dashed lines). The error bars around 1.4M! show the expected radius
of a ”standard” neutron star allowed by EOS constraints by [27] (black), and in this work
(beige, both at 90% confidence level). The horizontal dashed line shows a lower limit on the
expected astrophysical NS mass by [28].

and extinction (i.e. zero parallax does not necessarily imply infinite distance).
However, these caveats are mostly relevant for objects with poorly constrained
parallaxes, which does not apply to the source. Therefore, we start our modelling
by simply using a parallax to define priors for normalization of the atmosphere
models. We note that the model normalization is inversely proportional to
distance and parallax squared, so the inversion problem mentioned above is
not relevant here. We also correct for known zero point offsets in parallaxes
measured with Gaia, where the correction is calculated after [29] using the
code made available by the Gaia collaboration1 to be -27,239 micro-as. As a
cross-check, we also used the full geometric distance prior given by Eq 3 in

1https://www.cosmos.esa.int/web/gaia/edr3-code

The data of neutron star 

Springer Nature 2021 LATEX template

3XMM J185246.6+003317: a magnetar with low-B and a carbon atmosphere 9

Fig. 3 M � R relations for (purely hadronic) soft, intermediate and sti↵ cEFT EOS models and also for
the SLy4 EOS. For completeness, selected polytropic EOS models for hybrid stars with di↵erent energy
density jumps (⌘ values) are presented (for details on them, see the main text). The cusps in the associated
curves mark the phase transition masses beyond which an exotic (e.g., quark) phase appears. The dark blue
and the light blue areas are the posterior constraints for 1� (68%) and 2� (95%) CL, respectively. The
black cross marks the median of our best-fit stellar parameters.

We compare the results against selected purely hadronic reference equations of
state: the chiral e↵ective field theory (cEFT) models [see, eg., 37, 38], which are in
agreement with nuclear physics experiments and astrophysics, and also the bench-
mark nucleonic SLy4 EOS [39]. For completeness, we also use some polytropic sharp
phase transition EOSs for hybrid stars as presented in [40] with di↵erent energy den-
sity jump ⌘ values2. As shown in Fig. 3, the intermediate sti↵ness chiral EOS is
privileged to the detriment of (very) soft and sti↵ EOSs. Additionally, within 95%
CL, the SLy4 EOS is a viable possibility. Rotation may change the picture in general,
increasing the equatorial radii and masses for any EOS [41]. But this is not relevant
for 3XMM J1852+0033 due to its large period (⇠11.6 s); the e↵ect of rotation on
spacetime is of the order of 10�8 [42]. More precise analysis should be performed to
check for specific impact of our findings on current multi-messenger constraints for
the EOS.

2The polytropic parameters for the EOS with ⌘ = 0.18 are: (n0 = 0.475 fm�3, n02 = 0.413 fm�3, �1 = 3.5, �2 =
6.0, ncc = 0.20 fm�3). The parameters for ⌘ = 0.69 are: (n0 = 0.50 fm�3, n02 = 0.322 fm�3, �1 = 3.75, �2 = 6.5, ncc =
0.20 fm�3). For the precise meaning of each parameter, see [40].
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FIG. 1: Overview of the regression task, which involves either inferring stellar summary quantities such as mass and
radius, which can then be used to deduce the equation of state as in earlier work [23–26] or inference of EOS directly

from stellar spectra, as is demonstrated in this study.

for as:

dm

dr
= 4⇡r2✏ (2)

where the total gravitational mass M of a star with ra-

dius R is given by M ⌘ m(R) = 4⇡
R
R

0 dr r2✏. Given an
EOS, numerically solving the TOV equation forM and R
is straightforward. These equations create a one-to-one
map from the EOS to the M � R relation [17]; the in-
verse form of this map can therefore provide constraints
on the EOS from observable properties. To mathemati-
cally invert the TOV equation, at least two stars’ mass
and radius must be known exactly, a feat is not possi-
ble with current observational technology. Solving the
inverse problem is therefore much more complicated, po-
tentially even intractable without making significant nu-
merical assumptions.

B. X-Ray Spectroscopy for Neutron Stars

Many reliable observations of neutron stars come from
X-ray emission, either from electromagnetic radiation
from pulsars or thermal emission in quiescent low-mass
X-ray binaries (qLMXBs). qLMXBs are particularly de-
sirable to place strong constraints on neutron star struc-
ture as they are likely to have low magnetic fields (108�9

G), resulting in minimal e↵ects on the radiation transport
or temperature distribution on the star’s surface [38–
40]. Additionally, these binaries are identified in glob-
ular clusters where distances, ages, and reddening are
well-constrained [41]. The distinctive soft thermal spec-
tra from these sources come from a long-lived thermal
glow resulting from heat stored in the deep crust of the

neutron stars within the binary system during accretion,
which is then re-radiated from the whole surface when
accretion stops [42]. For the context of this work, the in-
ference of EOS will come from simulated thermal spectra
from qLMXBs.

Observation of neutron star emission, whether X-ray
or gravitational wave, has long served as a way to con-
strain mass and radius for neutron stars (eg. [43, 44]),
but uncertainties arise in the inference of these properties
for a variety of reasons. In the case of X-ray radiation
from qLMXBs, constraints on mass and radius are de-
termined by fitting the emitted spectrum with an appro-
priate atmosphere model (where the surface composition
is known or can be determined by the X-ray spectrum)
and combining the spectroscopic measurements with the
distance of the source. Models for thermal X-ray radi-
ation are based on a light-element atmosphere, as the
lightest element that is present in the atmosphere floats
to the top due to rapid gravitational settling on neutron
star surfaces [38]. Atmospheric models used on X-ray
spectra from qLMXBs gave the first broad constraints on
neutron star radius, and more modern analyses of X-ray
spectra have provided tighter constraints on both radius
and EOS.

he high-resolution imaging and spectroscopy of
NASA’s Chandra X-ray Observatory have provided pow-
erful insight into neutron star properties like cooling
[45, 46], mass and radius [38], and binary mergers of
exotic stars [47]. Chandra’s telescope contains a sys-
tem of four pairs of mirrors that focus incoming X-ray
photons to the Advanced CCD Imaging Spectrometer
(ACIS), which measures the energy of each incoming X-
ray. The observed spectrum, along with a corresponding
instrument response, is then fit to a well-motivated pa-

D. Farrell, et al. J. Cosm. Astro. Phys. 2(2023)016 
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Quark-Hadron pasta phase

Courtesy from Bai Zhan’s  slide 

● Clear phase boundary. 
● No mix phase. 

● Clear phase boundary. 
● With mix phase. 

● No clear phase boundary 

Maxwell Gibbs 3-Window

2. CONSTRUCTION: RED: quark matter 
BLUE: hadron matter
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The Gaussian process in 3-windows

The Pressure interpolated method 

 
 

The energy interpolated method 

 
 

36 Chapter 4. Cold Neutron Stars with Crossover
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Figure 4.1: Schematic picture of the QCD thermodynamic quantities (such as the pressure P or the energy

density ") as a function of the baron density (⇢) under the assumption of the hadron-quark crossover. The

crossover region where finite-size hadrons start to overlap and percolate is shown by the shaded area. The

thermodynamic quantities calculated on the basis of the point-like hadrons (shown by the dashed line at low

density) and that calculated on the basis of weakly interacting quarks (shown by the dashed line at high density)

lose their validity in the crossover region. This figure is adopted from [2].

interacting quark EOS break down and have large uncertainties shown in the shaded areas at

low and high densities.

Since the first principle QCD calculation at high baryon density is not available and e↵ective

models at finite baryon density with proper treatment of the confinement phenomena do not

exist at present, we will consider a phenomenological “interpolation” between the H-EOS and

Q-EOS as a first step. Such an interpolation is certainly not unique: Here we consider two

simplest possibilities, P -interpolation and "-interpolation as described below.

• P -interpolation as a function of baryon density

P (⇢) = PH(⇢)w�(⇢) + PQ(⇢)w+(⇢), (4.1)

w±(⇢) =
1

2

✓
1± tanh

✓
⇢� ⇢̄

�

◆◆
, (4.2)

where PH and PQ are the pressure in the hadronic matter and that in the quark matter,

respectively. The interpolating function w± is similar to the phenomenological interpo-

lation method at finite temperature in [106, 107, 108] (see Appendix F). There are two

phenomenological parameters, ⇢̄ and �. ⇢̄ means the typical crossover density and � is the

width of the crossover region. The window ⇢̄� � ⇠ ⇢ ⇠ ⇢̄+ � characterizes the crossover

region in which both hadrons and quarks are strongly interacting, so that neither pure

hadronic EOS nor pure quark EOS are reliable. The percolation picture illustrated in Fig.

4.1. Phenomenological Model for Crossover 37

4.1 is best implemented by the interpolation in terms of the baryon density ⇢ instead of

the baryon chemical potential. One should not confuse Eq.(4.1) with the pressure in the

mixed phase associated with the first-order phase transition in which w± is considered to

the volume fraction of each phase. In our crossover picture, the system is always uniform

and w� (w+) should be interpreted as the degree of reliability of H-EOS (Q-EOS) at the

given baryon density.

To calculate the energy density " as a function of ⇢ in a thermodynamically consistent

way, we integrate the thermodynamical relation,

P = ⇢2
@("/⇢)

@⇢
(4.3)

and obtain

"(⇢) = "H(⇢)w�(⇢) + "Q(⇢)w+(⇢) +�" (4.4)

�" = ⇢

Z
⇢

⇢̄

("H(⇢
0)� "Q(⇢

0))
g(⇢0)

⇢0
d⇢0 (4.5)

with

g(⇢) =
2

�
(eX + e�X)�2, (4.6)

X =
⇢� ⇢̄

�
. (4.7)

Here "H ("Q) is the energy density obtained from H-EOS (Q-EOS). �" is an extra term

which guarantees the thermodynamic consistency. Note that the energy per baryon from

the extra term �"/⇢, which receives main contribution from the crossover region, is finite

even in the high-density limit. Therefore the energy density obtained by the procedure

does not reach to the energy density of the pure quark matter.

• "-interpolation as a function of baryon density

"(⇢) = "H(⇢)w�(⇢) + "Q(⇢)w+(⇢). (4.8)

Other thermodynamic quantities are obtained through the thermodynamic relation;

P (⇢) = PH(⇢)w�(⇢) + PQ(⇢)w+(⇢) +�P (4.9)

�P = ⇢("Q(⇢)� "H(⇢))g(⇢), (4.10)

and µ = (" + P )/⇢. Here �P is an extra term which guarantees the thermodynamic

consistency; it is a localized function in the crossover region and obeys the property,

�P (0) = �P (1) = 0.

In the following, we consider crossover window which satisfies the following physical con-

ditions: (i) The system is always thermodynamically stable dP/d⇢ > 0, and (ii) the normal

nuclear matter is well described by the H-EOS so that ⇢̄� 2� > ⇢0 is satisfied.
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the extra term �"/⇢, which receives main contribution from the crossover region, is finite

even in the high-density limit. Therefore the energy density obtained by the procedure

does not reach to the energy density of the pure quark matter.

• "-interpolation as a function of baryon density

"(⇢) = "H(⇢)w�(⇢) + "Q(⇢)w+(⇢). (4.8)

Other thermodynamic quantities are obtained through the thermodynamic relation;

P (⇢) = PH(⇢)w�(⇢) + PQ(⇢)w+(⇢) +�P (4.9)

�P = ⇢("Q(⇢)� "H(⇢))g(⇢), (4.10)

and µ = (" + P )/⇢. Here �P is an extra term which guarantees the thermodynamic

consistency; it is a localized function in the crossover region and obeys the property,

�P (0) = �P (1) = 0.

In the following, we consider crossover window which satisfies the following physical con-

ditions: (i) The system is always thermodynamically stable dP/d⇢ > 0, and (ii) the normal

nuclear matter is well described by the H-EOS so that ⇢̄� 2� > ⇢0 is satisfied.
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crossover, there must exist a second, low temperature critical 
point (as shown in !gure 1) [49, 269, 270]. It is also possible 
that the crossover at high temperature and low baryon density 
is directly connected to the low temperature crossover, with-
out the need for the conventional !rst order line19.

As matter goes from having hadronic to quark degrees of 
freedom, it may pass through spatially inhomogeneous phases 
[281, 282]. While this is an intriguing possibility, we will not 
treat it in this review, except to mention one unconventional 
state, quarkyonic matter, which has both aspects of nuclear 
and quark matter [228]. This state is conjectured from studies 
of dense matter in QCD with a large number of colors Nc; in 
this limit screening of gluons by quarks is suppressed by a 
numerical factor 1/Nc, and thus the gluons remain con!ned 
until the quark chemical potential µq = µB/Nc reaches ∼
N1/2

c ΛQCD ! MN/Nc. In the limit of a large number of colors, 
the dominant pairing in the quarkyonic matter is, instead of 
diquark pairing, the formation of a spatially inhomogeneous 
chiral condensate of quark particle-hole pairs, called chi-
ral spirals. This idea is applied to neutron stars in [142]. In 
the real world with Nc = 3, the extent to which gluons are 
screened due to quark excitations remains unclear [251, 283].

5.6. Uni!ed construction

In the uni!ed procedure to construct the equation  of state 
one explicitly restricts the hadronic and quark matter equa-
tions of state to their respective domains of validity, avoiding 
the potentially unphysical implications of the conventional 
construction. The hadronic equation of state is used only at 
low densities, nB < nBL (‘L’ for lower), where two- and three-
body forces dominate and the composite nature of hadrons is 
not manifest. A reasonable choice of the maximum density 
nBL is  ∼2n0. We denote the corresponding chemical potential 
as µBL. Similarly, the decon!ned quark-matter equation  of 
state is used only at relatively high densities, beyond where 
baryons !rst percolate and quarks can no longer be thought of 
as belonging to speci!c baryons. For a typical baryon radius of 
rB ∼ 0.5 fm, geometric percolation should occur at a baryon 
density  ∼0.08/r3

B ∼ 4n0  [90], and thus a reasonable choice of 
the lowest density at which to use a quark matter equation of 
state is nBU ∼ (4 − 7)n0; we label the corresponding chemical 
potential µBU (‘U’ for upper). (In the calculations in section 6 
we choose nBU = 5n0 as a speci!c illustrative value.)

In the density range nBL < nB < nBU neither a purely had-
ronic nor quark matter picture is applicable. Given the present 
intractability of directly calculating the equation of state in this 

domain, a simple approximate approach is to interpolate P(µB) 
between the two limiting regimes in a thermodynamically con-
sistent way, requiring that the interpolated pressure matches 
the hadronic and quark values at µL

B and µU
B , while satisfying 

the thermodynamic constraint ∂nB/∂µB = ∂2P/∂µ2
B > 0, as 

well as the (reasonable) causality condition that the adiabatic 
speed of sound at zero frequency, c2

s = ∂P/∂ε not exceed the 
speed of light20. These conditions place signi!cant restrictions 
on the acceptable interpolations of the pressure in the interme-
diate density regime, and provide insights into the qualitative 
properties of this critical domain in neutron star structure.

As noted, the primary distinction between hybrid and uni-
!ed constructions of the equation of state is that in the latter 
no direct comparison of the hadronic and quark pressures is 
made, since the domains of validity of the hadronic and quark 
descriptions do not overlap. Accordingly, a number of the stiff 
quark matter equations of state excluded by the conventional 
construction (see !gure 14 and related discussion above) are 
allowed within a uni!ed construction. Furthermore, the uni-
!ed construction can encompass hadron-quark continuity.

A simple but reasonably general function to interpolate the 
equation of state between the hadronic and the quark matter 
regimes is a polynomial which smoothly joins the hadronic 
and quark pressure curves between µ = µBL  and µ = µBL ,

P(µB) =
N∑

m=0

Cmµ
m
B for µBL < µB < µBU, (63)

where µBL and µBU are chosen so that nB(µBL) ∼ 2n0 and 
nB(µBU) ∼ 5n0. The coef!cients Cm are chosen to satisfy 
matching conditions at the boundaries of the interpolating 
interval. In general, we require that

P(µBL) = PH(µBL),
∂P
∂µB

∣∣∣∣
µBL

=
∂PH

∂µB

∣∣∣∣
µBL

, · · ·

P(µBU) = PQ(µBU),
∂P
∂µB

∣∣∣∣
µBU

=
∂PQ

∂µB

∣∣∣∣
µBU

, · · · .
 

(64)

The number of derivatives to be matched at each boundary is 
a matter of choice. Matching up to the second derivative at 
each boundary ensures that the pressure, baryon number den-
sity, and baryon number compressibility (or susceptibility), 
∂nB/∂µB, are continuous. In this case one has six boundary 
conditions so one needs to include polynomials up to N  =  5.

As discussed in section 5.6, the interpolated pressure as a 
function of µB is constrained by the stability condition that 
P(µB) be without an in#ection point, and the requirement 
that c2

s/c2 = ∂P/∂ε = (1/c2)∂ lnµB/∂ ln nB ! 1, so that the 

19 The Asakawa–Yazaki critical point is being searched for in experimental 
programs at the RHIC heavy ion collider at Brookhaven National Laboratory 
[271], the SPS at CERN [272], SIS at GSI in Germany, and will be searched 
in the future program at FAIR at GSI, NICA at JINR in Dubna [273], and 
J-PARC in Japan [274]. Recently possible experimental signatures for the 
(conventional) critical point were found in analyses for the critical #uctua-
tions [275] and the !nite volume scaling [276]. Owing to controversies in 
the interpretation of those results [277–279], further studies are called for. 
It should be emphasized that the current state-of-the-art lattice QCD studies 
based on a Taylor expansion in µB/T  around µB = 0 disfavor a critical point 
in the region where the expansion is trustworthy, µB/T ! 2 [280]. So far the 
existence of the !rst order phase transition has not been established.

20 However, [284–287] indicate that this requirement of causality on cs 
is still suggestive; we are not aware of a rigorous proof that cs ! c is 
necessary for causal propagation of signals and information. In particular, 
Lorentz invariance itself does not impose such a constraint [284, 287], and 
it is possible to devise models that exhibit superluminal sound speed cs 
(and sometimes even superluminal group velocity as well), yet with causal 
propagation of signals [284–286]. The !rst argument that the sound speed in 
dense matter can exceed c/

√
3 is given by Zel’dovich [288]. The assumption 

of cs ! c was used early on to obtain a maximum possible neutron star mass 
of 3.2 M! [289], compared with a mass of  ∼5M! in [290] which did not 
assume cs ! c; re!ned upper bounds were given in [214, 291].
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4.2 Neutron Star Properties with P -interpolation with-

out CSC

4.2.1 Interpolated EOS

In the present section, we consider the case of P -interpolation without diquark condensation

(H = G0

D
= 0). In Fig.4.2 (a) and (b), pressure and energy density as a function of density are

plotted in the case of the P -interpolation between TNI2u for H-EOS and NJL with g
V
= G

S

for Q-EOS according to Eq.(4.1). The crossover window is chosen to be (⇢̄,�) = (3⇢0, ⇢0)

and is shown by the shaded area on the horizontal axis. The filled circles denote the onset

of strangeness degrees of freedom, either hyperons or strange quarks. We comment on that

TNI2u and NJL with the “universal” four-Fermi vector type interaction g
V
include hyperons or

strange quarks at almost the same density ⇢th ⇠ 4⇢0. An important lesson one can learn from

Fig.4.2 is that the H-EOS (Q-EOS) is nothing more than the asymptotic form of the “true”

P (⇢) around ⇢ = 0 (⇢ = 1). Therefore, naive extrapolation of H-EOS and Q-EOS beyond

their applicability would miss essential physics. To see the sti↵ness of the interpolated EOS,

we plot the pressure as a function of energy density in Fig.4.3 (a). The parameters are the

same as in Fig. 4.2. At higher density region than the crossover window, the interpolated EOS

(a) (b)

(c) (d)

Figure 4.2: (a) The interpolated pressure between TNI2u H-EOS and NJL Q-EOS with gV = GS for

(⇢̄,�) = (3⇢0, ⇢0). Pressure is illustrated by a blue line. The filled circle denotes the threshold density of

strangeness. (b) The energy density obtained from the interpolated pressure in (a). Energy density is illustrated

by a blue line. The filled circle denotes the threshold density of strangeness. These figures are taken from [2].
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The Gaussian process 
Assume the function  

to satisfy

Summary of Lecture 4: The Gaussian process

Assume that:
y = f(x).

Where f(x) is a function with the following propertie, for any set x1, x2, · · · , xn it
satisfies:

2
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f(x1)
f(x1)

...
f(xn)

3
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⇠ N
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BBB@

2
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µ(x1)
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...
µ(xn)
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,
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(x1, x1) (x1, x2) . . . (x1, xn)
(x2, x1) (x2, x2) . . . (x2, xn)

...
... . . . ...

(xn, x1) (xn, x2) . . . (xn, xn)
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7775

1

CCCA

For simplicity we will use µ = 0.
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The observation data is  

Summary of Lecture 4: The Gaussian process

How to do inference with the Gaussian process?
• Observed data:

(x1, y1), (x2, y2), · · · , (xn, yn)

• Want to compute a new point: x⇤
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The prediction value of f is  

Summary of Lecture 4: The Gaussian process
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The Gaussian process 
It can be use the matrix notation  

where the mean function is zero for notational simplicity. 

 The distribution of prediction point can be obtained   

Summary of Lecture 4: The Gaussian process

Let:
2

666664

f(x1)
f(x2)

...
f(xn)
f(x⇤)

3

777775
⇠ N

0

BBBBB@

2

666664

0
0
...
0
0

3

777775
,

2

666664

(x1, x1) (x1, x2) . . . (x1, xn) (x1, x⇤)
(x2, x1) (x2, x2) . . . (x2, xn) (x2, x⇤)

...
...

. . .
...

...
(xn, x1) (xn, x2) . . . (xn, xn) (xn, x⇤)
(x⇤, x1) (x⇤, x2) . . . (xn, x⇤) (x⇤, x⇤)

3

777775

1

CCCCCA

matrix notation 
y

f(x?)

�
⇠ N

✓
0
0

�
,


K(X,X) K(x?,X)
K(X, x?) K(x?, x?)

�◆

10 / 38 antonio.horta.ribeiro@it.uu.se Gaussian processes part II

Summary of lecture 4: The Gaussian process

This gives a distribution over f(x?), which we can condition on observations y

f(x?) |y ⇠ N
�
K(x?,X)K(X,X)�1y,K(x?, x?)�K(x?,X)K(X,X)�1K(X, x?)

�

(Here, x? is a vector with one element for each pixel on the screen ! the samples look continuous!)
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The Hadron and Quark phases
The Lagrangian of Hadron phase 
 

method. In Section 3, the properties of nuclear matter and the
NS are presented and discussed. Finally, a summary and
conclusion will be given in Section 4.

2. EoS

2.1. HP

We adopt the RMF model to describe the hadronic matter in
a low-density region. In the RMF model (Walecka 1974;
Müller & Serot 1996; Horowitz & Piekarewicz 2001; Bao et al.
2014a), the nucleons interact with each other by exchanging
various mesons, including the scalar-isoscalar meson(σ),
vector-isovector meson(ω), and vector-isovector meson(ρ).
The interaction between the ω and ρ mesons is involved in a
full Lagrangian,
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whereWμν and
G
RNO are the antisymmetry tensor fields of ω and ρ

mesons. Within the mean-field approximation, the meson fields
are treated as classical fields,

G
, , .T T X X S S� § � � § � � § �N N

Together with the Euler–Lagrange equations, the equations of
motion for nucleons and mesons are given by
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where ,i
s

iS S (i= n, p) are the scalar and vector densities of
species i, respectively. They are generated by the expectation
value of nucleon fields. * *M M M gp n i T� � � T is the effective
nucleon mass.

The hadronic matter in an NS, which contains nucleons and
leptons, should satisfy the charge neutrality, ρp= ρe+ ρμ, and
β equilibrium, μp= μn− μe, μμ= μe. The chemical potentials
of nucleons and leptons can be derived from the thermo-
dynamics equations at zero temperature,
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where kFi is the Fermi momentum, which is related to the
vector density by k 3i Fi

3 2S Q� . With the energy-momentum
tensor in a uniform system, the total energy density and

pressure of the hadronic matter can be written as
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2.2. QP

In the description of quark matter, a three-flavor NJL model
is adopted (Hatsuda & Kunihiro 1994; Masuda et al. 2013b).
The Lagrangian density is

( ) [( )

( ) ] ( )
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$

where q is the quark field with three flavors and three colors
together with the current quark mass matrix m= diag(mu, md,
ms). The term related to GS is a chiral symmetric four-quark
interaction, where λa are the Gell–Mann matrices with

I2 30M � . The term proportional to GV introduces addi-
tional vector and axial-vector interactions to produce universal
repulsion between quarks (Kitazawa et al. 2003; Bratovic et al.
2013; Masuda et al. 2013a), which plays an important role in
describing massive stars. The last term related to the coefficient
K corresponds to the six-quark Kobayashi–Maskawa–’t Hooft
interaction.
Within mean-field approximation, the non-diagonal compo-

nents of the condensates in a flavor space can be ignored. The
constituent quark masses ( )*m i u d s, ,i � can be generated
self-consistently through the gap equations,

( )*m m G K4 2 , 7i i S i j kT T T� � �

where q̄ qi i iT � � § is the quark condensation in i flavor. The
pressure can be evaluated from the thermodynamics potential,
P n Ti i iN F� �8 � � � �+ , where ε is the energy density,
T is the temperature, + is the entropy density, and μi is the
effective chemical potential of quarks, which can be expressed
as

( )* G n2 . 8i i V
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i
, ,
�N N� �
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3
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leptons, should satisfy the charge neutrality, ρp= ρe+ ρμ, and
β equilibrium, μp= μn− μe, μμ= μe. The chemical potentials
of nucleons and leptons can be derived from the thermo-
dynamics equations at zero temperature,
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where kFi is the Fermi momentum, which is related to the
vector density by k 3i Fi

3 2S Q� . With the energy-momentum
tensor in a uniform system, the total energy density and

pressure of the hadronic matter can be written as
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2.2. QP

In the description of quark matter, a three-flavor NJL model
is adopted (Hatsuda & Kunihiro 1994; Masuda et al. 2013b).
The Lagrangian density is
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where q is the quark field with three flavors and three colors
together with the current quark mass matrix m= diag(mu, md,
ms). The term related to GS is a chiral symmetric four-quark
interaction, where λa are the Gell–Mann matrices with

I2 30M � . The term proportional to GV introduces addi-
tional vector and axial-vector interactions to produce universal
repulsion between quarks (Kitazawa et al. 2003; Bratovic et al.
2013; Masuda et al. 2013a), which plays an important role in
describing massive stars. The last term related to the coefficient
K corresponds to the six-quark Kobayashi–Maskawa–’t Hooft
interaction.
Within mean-field approximation, the non-diagonal compo-

nents of the condensates in a flavor space can be ignored. The
constituent quark masses ( )*m i u d s, ,i � can be generated
self-consistently through the gap equations,
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where q̄ qi i iT � � § is the quark condensation in i flavor. The
pressure can be evaluated from the thermodynamics potential,
P n Ti i iN F� �8 � � � �+ , where ε is the energy density,
T is the temperature, + is the entropy density, and μi is the
effective chemical potential of quarks, which can be expressed
as
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where the slope of the symmetry energy is L �
[ ( ) ]E3 B B0 sym B 0

S S Ss s S S� . It characterizes the density depend-
ence of Esym and is linearly correlated with the neutron skin
thickness Rskin

208 of 208Pb. However, the uncertainty in the present
measurement, such as PREX experiments, (Abrahamyan et al.
2012; Adhikari et al. 2021), prevents us from inferring the slope
of the symmetry energy. In order to explore the influence of L on
neutron-rich systems, several new parameter sets based on the
original IUFSU set are developed, which can keep the isoscalar
properties of nuclear matter and finite nuclei from the IUFSU set,
and change their isovector properties by controlling the strengths
of gρ and Λv (Bao et al. 2014a).

The parameters, gρ and Λv, based on the IUFSU model with
L from 50MeV to 110 MeV are listed in Table 3 (Bao et al.
2014a; Hu et al. 2020). The parameters gρ and Λv are adjusted,
where L is a given value at saturation density and Esym is
fixed at the nuclear subsaturation density of ρ= 0.11 fm−3.
These L satisfy the recent constraints, 42� L� 117MeV
from the SπRIT Collaboration (Estee et al. 2021) and
L= 106± 37MeV obtained by using the strong correlations
between Rskin

208 and L within the covariant energy density
functional from PREX-II (Reed et al. 2021). Other parameters
are completely the same as those in the original IUFSU set
given in Table 1. The symmetry energies at the saturation
point and the corresponding Rskin

208 from these parameter sets
also satisfy the constraints from PREX-II, Esym(ρ0)= 38.1±
4.7 MeV (Reed et al. 2021), and R 0.283 0.071 fmskin

208 � o
(Adhikari et al. 2021).

Considering an NS consisting of the pure hadronic matter, its
properties, such as the maximum masses, Mmax, the corresp-
onding radius, Rmax, the central density, maxS , the radius of a
1.4Me NS, R1.4, the density of a 1.4Me NS, ρ1.4, and
dimensionless tidal deformability of a 1.4Me NS, Λ1.4 can be
derived by solving the Tolman–Oppenheimer–Volkoff (TOV)
equation (Tolman 1939; Oppenheimer & Volkoff 1939) with
the EoS of NS matter. These properties of NSs obtained from
the above IUFSU parameter sets with different L are shown
in Table 4. We can find that the maximum masses of the
NSs from these sets are not sensitive to L and are all less than
2Me. On the other hand, with the increase of L, the radii
corresponding to the maximum mass are from 11.15–11.71 km,
while the radii of 1.4Me change in the range of 12.40–13.54 km.
The central densities are around 1.0 fm−3. They become about
0.38–0.43 fm−3 for the 1.4Me NS (Hu et al. 2020).
For the QP, the HK parameter set of the SU(3) NJL model

was adopted (Hatsuda & Kunihiro 1994) with Λ= 631.4MeV,
GSΛ

2= 1.835, GDΛ
5= 9.29, mu,d= 5.5MeV, and ms=

135.7MeV, where Λ is the three-momentum cutoff. In the
SU(3) NJL model, the vector coupling GV has not been well
determined. It has a similar magnitude to the scalar coupling scale
GV∼GS or GV∼ 2GS (Bratovic et al. 2013; Masuda et al. 2013b)
in order to explain the lattice results on the curvature of the linear
chiral restoration at zero density. The studies on the QCD phase
diagram suggest that it could be comparable to or even larger than
GS (Lourenço 2012). Therefore, its value is chosen as GV= 1.0,
1.4, and 1.8GS in this work to study its influences on quark matter
since the vector repulsion plays an important role in stiffening the

Table 2
Saturation Properties of Nuclear Matter for the IUFSU Model

ρ0(fm−3) E0(MeV) K(MeV) Esym(MeV) L(MeV)

IUFSU 0.155 −16.397 230.749 31.336 47.165

Note. E0, K, Esym, and L are the energy per nucleon, incompressibility,
symmetry energy, and the slope of symmetry energy at saturation density ρ0,
respectively.

Table 3
Parameters gρ and Λv Generated From the IUFSU Model for Different Slope L

at Saturation Density ρ0 with Fixed Symmetry Esym = 26.78 MeV at
ρ = 0.11 fm−3

L(MeV) 50.0 70.0 90.0 110.0

gρ 12.8202 10.3150 9.3559 8.8192
Λv 0.0420 0.0220 0.0098 0.0011
Esym(ρ0)(MeV) 31.68 33.94 35.74 37.27
Rskin

208 (fm) 0.1739 0.2278 0.2571 0.2770

Note. Esym(ρ0) and Rskin
208 are the symmetry energy at saturation density, and the

neutron skin thickness of 208Pb, respectively (Bao et al. 2014a).
Table 4

NS Properties for the IUFSU Model with Different L

L(MeV) 50.0 70.0 90.0 110.0

:M Mmax 1.9387 1.9365 1.9447 1.9853
[ ]R kmmax 11.1548 11.2419 11.4126 11.7106
[ ]fmmax

3S � 1.0251 1.0418 1.0192 0.9651
R1.4[km] 12.4008 12.7370 13.0800 13.5400
ρ1.4[fm−3] 0.4330 0.4285 0.4158 0.3862
Λ1.4 512 532 604 735

Figure 1. The interpolated pressure between the IUFSU model with L = 70 in
the HP and the NJL model with GV = GS in the QP with the GPR method.
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ρL= (2–3)ρ0, below which the hadronic phase exists. Simi-
larly, the deconfinement density of nucleons should happen in
the high-density region. The reasonable choice for the closure
density of the hadron-quark crossover is around ρU∼ (4–7)ρ0
(Baym 1979; Celik et al. 1980). To investigate the effects of the
crossover window between HPs and QPs on the EoSs and NS
structure, the crossover windows are fixed as (ρL, ρU)= (0.3,
0.6), (0.3, 0.8), (0.4, 0.6), and (0.4, 0.8)fm−3 in this work. In
addition, the hyperonic star including the hyperons with
different nonlinear and density-dependent models have been
investigated in the framework of the RMF model (Huang et al.
2022), which include the IUFSU parameter set. The threshold
density of the first hyperon for the IUFSU model is about
0.38 fm−3. The inclusion of hyperons will soften the EoS of the
HP. When the hadron-quark crossover phase starts from
ρL= 0.3 fm−3, the hyperon cannot appear in the HP, while the

ρL is changed to 0.4 fm−3, the hyperon only can exist between
0.38 and 0.40 fm−3. It may slightly make the HP EoS softer.
Therefore, the hyperon effect on the crossover EoS and the
corresponding neutron structure can be negligible.
In Figure 2, the pressure as a function of energy density is

plotted in the case of P− ρB interpolation with the GPR
method between the IUFSU model with L= 50, 70, 90, and
110 MeV, and the NJL model with GV= 1.0, 1.4, and 1.8GS.
The crossover windows are chosen to be (ρL, ρU)= (0.3, 0.6),
(0.3, 0.8), (0.4, 0.6), and (0.4, 0.8) fm−3, and can be inferred
from the density range of the shaded areas. The EoSs of the NS
crust as the nonuniform matter were calculated with the
corresponding IUFSU parameterizations in the framework of
the self-consistent Thomas–Fermi approximation (Bao &
Shen 2015). In the core region of an NS, the EoSs of the
uniform matter in the low-density region are mainly determined

Figure 3. Speeds of sound vs. baryon density with GPR interpolation. The parameter sets in the HP and QP, and the crossover windows are the same as in Figure 2.
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Figure 4. Radius vs. NS mass with the EoS from the GPR interpolation method. The parameter sets in the HP and QP, and the crossover windows are the same as in
Figure 2.
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0.6), (0.3, 0.8), (0.4, 0.6), and (0.4, 0.8)fm−3 in this work. In
addition, the hyperonic star including the hyperons with
different nonlinear and density-dependent models have been
investigated in the framework of the RMF model (Huang et al.
2022), which include the IUFSU parameter set. The threshold
density of the first hyperon for the IUFSU model is about
0.38 fm−3. The inclusion of hyperons will soften the EoS of the
HP. When the hadron-quark crossover phase starts from
ρL= 0.3 fm−3, the hyperon cannot appear in the HP, while the

ρL is changed to 0.4 fm−3, the hyperon only can exist between
0.38 and 0.40 fm−3. It may slightly make the HP EoS softer.
Therefore, the hyperon effect on the crossover EoS and the
corresponding neutron structure can be negligible.
In Figure 2, the pressure as a function of energy density is

plotted in the case of P− ρB interpolation with the GPR
method between the IUFSU model with L= 50, 70, 90, and
110 MeV, and the NJL model with GV= 1.0, 1.4, and 1.8GS.
The crossover windows are chosen to be (ρL, ρU)= (0.3, 0.6),
(0.3, 0.8), (0.4, 0.6), and (0.4, 0.8) fm−3, and can be inferred
from the density range of the shaded areas. The EoSs of the NS
crust as the nonuniform matter were calculated with the
corresponding IUFSU parameterizations in the framework of
the self-consistent Thomas–Fermi approximation (Bao &
Shen 2015). In the core region of an NS, the EoSs of the
uniform matter in the low-density region are mainly determined
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The Schematic of EOS from DNN 
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Figure 1. Schematic of the TOV mapping ΨTOV and the regression analysis of the inverse TOV
mapping from the M -R data.

to train the NN with as many and different ω’s as possible. The trained NN can then
receive the M -R data for one particular ω and return the output of the most likely EoS
correspondingly. To put it another way, the “inversion” of the mapping Πobs ◦ ΨTOV is
approximated by the regression, particularly by the deep NN in our approach, which would
be symbolically written as Reg[Πobs ◦ ΨTOV]−1.

In the supervised learning, we need to prepare the training data and the validation
data composed of pairs of the input M -R data and the desired output EoS. To generate
the training data efficiently, we make use of the asymmetry between Πobs ◦ ΨTOV and
Reg[Πobs ◦ ΨTOV]−1; that is, we can straightforwardly calculate the forward mapping of
Πobs ◦ ΨTOV by modeling the observation Πobs(ω), while the latter inverse mapping, which
is what we currently want to know, is more non-trivial. Thus, first, we randomly generate
many possible answer EoSs represented by several parameters. We next generate the
corresponding M -R data by applying the forward mapping with various ω’s. We will
explain technical details of handling and simplifying ω in section 2.3.

Now, we turn to the description of the architecture of our NN model and we will
optimize the model parameters so that the model can infer the answer EoS corresponding
to the input training M -R data. During the training, it is important to monitor the
training quality by checking the prediction error behavior for the validation data. After
the optimization process is complete with good convergence of the validation error, we can
test the predictive power using the mock data for which the true answer EoS is known (see
section 3 for actual calculations). Once the method passes all these qualification tests, we
finally proceed to the application of the real observational data to obtain the most realistic
EoS (see section 4 for details).

Here, we comment on an alternative possibility of the inference problem formulation.
As already mentioned, the inverse TOV mapping, Ψ−1

TOV, is well-defined by itself. Thus, it
is also feasible to decompose the inference as Reg[Πobs ◦ ΨTOV]−1 = Ψ−1

TOV ◦ Reg[Πobs]−1

and train the NN aimed to approximate Reg[Πobs]−1; that is, the NN model would predict
the M -R curve from the input M -R data. We will not adopt this strategy since it is unclear

– 6 –

Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019 
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The feedforward neural network  

introduce a new principle to infer the neutron star EoS
utilizing deep (i.e., many-layered) neural network of
machine learning, which has been successfully applied
to QCD, nuclear physics, and gravitational wave data
analysis [18–24]. Throughout this paper, we use the natural
unit; c ¼ G ¼ 1.

II. NEURAL NETWORKS

Here, we make a brief overview on machine learning and
the deep neural network. This method provides a handy and
powerful way to find an optimized mapping expressed in
the “neural network” model. For the “supervised” learning,
we first prepare “training data”, that is, a data set of input
and corresponding output, and then optimize the parameter
set of the mapping from the input to the output. Once the
optimization is sufficiently achieved or the training is
complete, the neural network model can conversely make
an educated guess about the most likely output correspond-
ing to a given input. The advantage of machine learning, as
compared to ordinary fitting procedures, is that we need not
rely on preknowledge about fitting functions because the
multilayer structures are capable of capturing any continu-
ous functions.
The model function of the feedforward neural network

can be expressed as follows:

yi ¼ fi
!
fxjg

"""
n
Wð1Þ

jk ; a
ð1Þ
j ;…;WðLÞ

jk ; aðLÞj

o#
; ð1Þ

where fxig and fyig are input and output data, respectively.
The coefficients fWðkÞ

ij ; a
ðkÞ
i g are the fitting parameters. We

setup Lþ 1 layers (including the input and the output
layers), each consisting of nodes called neurons. For the
first layer (which is labeled as 0 in this paper), the input is
set as xð0Þi ¼ xi ð1 ≤ i ≤ N1ÞwithN1 being the size of input
fxig. For the subsequent layers, the transformations are
iteratively applied as

xðkþ1Þ
i ¼ σðkþ1Þ

$XNk

i¼1

Wðkþ1Þ
ij xðkÞj þ aðkþ1Þ

i

%
; ð2Þ

where 1 ≤ i ≤ Nkþ1 with Nkþ1 being the neuron numbers
in the (kþ 1)-th layer. The final output from the L-th layer
becomes yi ¼ fiðfxjgÞ ¼ xðLÞi (1 ≤ i ≤ NL) with NL being
the size of output fyig. Here, σðkÞðxÞ’s are called “activation
functions” and the typical choices include the sigmoid
function σðxÞ ¼ 1=ðex þ 1Þ, the ReLU σðxÞ ¼ maxf0; xg,
hyperbolic tangent σðxÞ ¼ tanhðxÞ, etc. The fitting para-
meters, WðkÞ

ij and aðkÞi , on the k-th layer, denote the weights
between nodes in two adjacent layers and the activation
offset at each neuron called the bias, respectively. We note
that there are no physical motivations to these fitting
parameters in this model-independent setup, and therefore
these fitting parameters have no physical meaning at the

setup stage. The general design structure is schematically
depicted in Fig. 1, in which the calculation proceeds from
the left with input fxig to the right with output fyig.
For the actual optimization procedure we choose a “loss

function” to be minimized; if the loss function is the mean
square deviation, the learning amounts to the standard least
square method with fi expressed by the neural network.

III. GENERATING TRAINING DATA

The training data consists of randomly generated
EoS parameters and corresponding observational points,
(Mi, Ri), which will be used as output and input of the
neural network, respectively. For better learning, the train-
ing data quality is important. For the training purpose to
make the neural network adaptive enough to cover any
possible answers, we can include even intuitively unnatural
data into the training data.
First, we elucidate our scheme for the EoS generation

(see Ref. [25] for details). Up to the density ρ0, we use a
conventional nuclear EoS (i.e., SLy [26] in this study), and
a range ½ρ0; 8ρ0& is equally partitioned in logarithmic scale
into five segments. We randomly assign the average sound
velocity dp=dρ ¼ c2s to five segments according to the
uniform distribution within 0.02 < c2s < 0.98 where a
small margin by 0.02 is a regulator to avoid singular
behavior of the TOVequation. From these sound velocities
we determine the pressure values at segment boundaries.
We interpolate the EoS inside of each segment assuming
polytrope p ∝ ρΓ. We note that we allow for small c2s
corresponding to a (nearly) first-order phase transition. We
generated 2000 EoSs in this way.
Next, we solve the TOVequation [8] using the generated

pðρÞ from m ¼ r ¼ 0 and the enthalpy density h ¼ hc
(where hc is a free parameter corresponding to a choice of
the central core density) until h hits zero (see Ref. [10] for
the formulation using h). Then, we identifyM ¼ mðh ¼ 0Þ
and R ¼ rðh ¼ 0Þ, so that (M, R) with various hc gives the
M-R curve. For each randomly generated EoS we get the
M-R curve and identify the maximum mass Mmax. If Mmax
does not reach the observed mass [i.e., 1.97M⊙ from the
lower bound of ð2.01' 0.04ÞM⊙ [3] where M⊙ denotes
the solar mass], such EoSs are rejected from the ensemble.
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Figure 11. Schematic flow of data generation procedure for the analysis in section 4.

σM = 0.1M! and σR = 0.5 km, for all ∆Mi and ∆Ri. In reality, however, they should vary
for different i, i.e., σM,i and σR,i should correspond to the observational uncertainties of
(Mi, Ri). To deal with the real observational data, the revised procedure for sampling the
M -R points is sketched in figure 11. We need to design the NN with an input of information
including σM,i and σR,i: the input variables are extended to (Mi, Ri; σM,i, σR,i).

We shall recapitulate the data generation scheme as follows. In the same way as in
section 3 we prepare 5 EoS parameters c2s,i (i = 1, . . . 5) in the output side. In this section
the training data comprises 14×4 input parameters, i.e., (Mi, Ri; σM,i, σR,i) (i = 1, . . . , 14).
We note that i runs to not 15 but 14 corresponding to the number of observed neutron stars
as explained in section 4.1. We calculate the M -R curve for each EoS, and then select 14
points of (M∗

i , R
∗
i ) on the M -R curve and add statistical fluctuations of ∆Mi and ∆Ri [see

figure 11 (3)]. Let us go into more detailed procedures now. Unlike σM and σR in section 3
here we randomly generate σM,i and σR,i differently for i = 1, . . . 14. These variances, σM,i

and σR,i, are sampled from the uniform distributions, [0,M!) and [0, 5 km), respectively.
In view of the observational data, these ranges of the distributions should be sufficient to
cover the realistic situations. Then, ∆Mi and ∆Ri are sampled according to the Gaussian
distributions with these variances, σM,i and σR,i. Finally we obtain the training data,
(Mi = M∗

i + ∆Mi, Ri = R∗
i + ∆Ri;σM,i,σR,i) (i = 1, . . . 14) [see figure 11 (4)]. Hereafter

we call these 14 tetrads of (Mi, Ri;σM,i,σR,i) an observation.
Now we prepare the training data set by taking multiple observations. For each EoS

we randomly generate 100 different pairs of (σM,i,σR,i), and then we make another 100
observations for each (σM,i,σR,i). From the former 100 pairs the NN is expected to learn
that the observational uncertainties may vary, and the latter tells the NN that the genuine
M -R relation may deviate from the observational data. In total we make ns = 10000
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The representation of EOS  

The spectral representation 

support EOSs with ε < 0, since its range is necessarily the
whole real line. Moreover, by default, GPR on εðpÞ would
include thermodynamically unstable or acausal EOSs—i.e.,
functions with dp=dε < 0 or superluminal sound speeds
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dε

p
> c. To incorporate causality, thermody-

namic stability, and positivity of the total energy automati-
cally, we instead build a GP over

ϕ ¼ log
"
c2

dε
dp

− 1

#
: ð13Þ

The auxiliary variable ϕ, first introduced in Ref. [35], can
take any value along the real line, and it naturally
incorporates the desired physical constraints because
ϕ ∈ R corresponds to 0 ≤ dp=dε ≤ c2. Positivity of
p then ensures cs ≤ c and ε ≥ 0. The spectral approach
to EOS inference [36,37] employed in Ref. [15] also starts
with a similar transformation, but goes on to decompose the
EOS onto a small set of basis functions. In contrast, we
assign a prior process to ϕ ¼ ϕðlogpÞ via GPR condi-
tioned on tabulated EOSs. The process over ϕ can easily be
translated to a process over ε. Since the map from ϕ to ε is
nonlinear, Gaussian uncertainty in ϕ will, however, gen-
erally not correspond to Gaussian uncertainty in ε.
We condition the GP for ϕðlogpÞ on a training set of n

candidate EOSs εðαÞðpÞ from the literature. The data for the
αth candidate EOS constitute a function log εðαÞðlogpðαÞ

j$ Þ
with ordinates log εðαÞj$ and abscissae logpðαÞ

j$ .
3 As the

amount of flog εðαÞj$ ; logp
ðαÞ
j$ g data available may vary from

candidate EOS to candidate EOS, and the relative weight
assigned to each model in the training set is proportional to
the number of data points included, we resample each
εðαÞðpÞ to s points so that the GP for ϕðlogpÞ is
conditioned equally on every input EOS. This need not
be the case—one could formulate a mixture model of GPs
(see, e.g., Refs. [62,63]) to establish a weighted training set
of candidate EOSs—but for simplicity we assume equal
weights here. This resampling could be performed with,
e.g., linear interpolation, but we instead use GPR to obtain
an estimate of the uncertainty associated with the inter-
polation. Thus, we construct a GP representation of
ϕðαÞðlogpÞ for each candidate EOS in the training set,
such that one realization of the αth GP is an s-fold list of
ordinates fϕðαÞ

i g at evenly spaced points in logp. In this
way, the maps from ε to ϕ for the tabulated EOSs—which
come without uncertainties—are effectively equipped with
error bars. The GPs for ϕðαÞðlogpÞ are subordinate to, and
used as input for, the overarching GP for ϕðlogpÞ. We next
describe the construction of the GPs for ϕðαÞðlogpÞ in some
detail, before addressing the GP for ϕðlogpÞ itself.

For every candidate EOS εðαÞðpÞ, we first fit log εðαÞ with
a low-order polynomial in logp and construct a GP for the
residuals. The resulting joint distribution on log εðαÞ, its first
derivative ∂i log εðαÞ ≔ d log εðαÞ=d logpjp¼pi

and the tabu-

lated data flog εðαÞj$ g is
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Here we take the values flog ε̂ðαÞi ; ∂i log ε̂ðαÞ; log ε̂
ðαÞ
j$ g from

the low-order polynomial fit as the mean in the process and
model correlations among the residuals around this fit.
While we assume a squared-exponential covariance kernel
for all tabulated EOSs, we choose hyperparameters
ðσðαÞ; lðαÞÞ by hand separately for each KðαÞ

ij and inspect
the resulting GPs to ensure that they adequately reproduce
the features of the input EOSs.
Conditioning the joint distribution on the tabulated

ordinates flog εðαÞj$ g via Eq. (5), we obtain

%
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where the explicit expressions for the expectation value
and conditioned covariance follow from Eqs. (9) and (10).
The corresponding process for ϕðαÞ is calculated from
Eq. (13) as

ϕðαÞ
i j logpi; flog ε

ðαÞ
j$ ; logp

ðαÞ
j$ g

∼N ðEðαÞðϕiÞ;CovðαÞðϕi;ϕjÞÞ; ð16Þ

with

EðαÞðϕiÞ ¼ log
"
EðαÞð∂i log εÞ

"
eE

ðαÞðlog εiÞ

pi

#
c2 − 1

#
: ð17Þ

We approximate the covariance matrix CovðαÞðϕi;ϕjÞ
through a first order Taylor expansion for ϕi in terms of
log εi and ∂i log ε, i.e.,

3Candidate EOS data tabulated as p vs ρ can also be
accommodated by transforming the rest-mass energy density
to total energy density via Eq. (12).
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where the explicit expressions for the expectation value
and conditioned covariance follow from Eqs. (9) and (10).
The corresponding process for ϕðαÞ is calculated from
Eq. (13) as
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We approximate the covariance matrix CovðαÞðϕi;ϕjÞ
through a first order Taylor expansion for ϕi in terms of
log εi and ∂i log ε, i.e.,

3Candidate EOS data tabulated as p vs ρ can also be
accommodated by transforming the rest-mass energy density
to total energy density via Eq. (12).
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6

Figure 2. The generation range of �-ln p. We will randomly
select points within this range and then use GPR method to
generate EOS. In panel (a ) the nine EOSs are treated to
obtain the mean µ and variance �, whose 95% confidence
interval is taken to obtain the fitting range. In panel (b),
the generation range is based on DDME1 curve, with a fluc-
tuation of 0.3.

EOSs. On the contrary, the model-agnostic prior404

has a loose boundary. It may consider more405

range of plausible EOSs.406407

To produce an EOS of neutron stars (including the408

high-density region) with the GPR method and afore-409

mentioned schemes, seven pressure points ln pi (i =410

1, 2, · · · , 7) were selected, with the same interval,411

in the range ln p 2 [1, 7]. �i was randomly generated412

in the training interval at each ln pi point as an initial413

data set (�i, ln pi). The EOS below nuclear satura-414

tion density was chosen as the one from the SLy4 set.415

A smooth and continuous �(ln p) function is predicted416

by the GPR method, where the hyper-parameters, l417

and � are obtained by maximizing the marginal log-418

likelihood, as shown in Eq. (11). Furthermore, the star419

point, �1 = �(ln p = 1) was fixed as the magnitude from420

the DDME1 parameter set.421

Figure 3. The corresponding ✏�p relations of scheme 1 and
2 in Figure 2 and the model-informed and model-agnostic
priors in the Bayesian inference method by Landry and Es-
sick (Landry & Essick 2019).

The M -R relation of a neutron star can be calculated422

using the EOS from the GPR method by solving the423

TOV equation. In the present framework, the train-424

ing data set of the DNN should assemble the points425

on the M -R curve, which correspond to the observ-426

ables. The method proposed by Fujimoto et al. (Fu-427

jimoto et al. 2021) is used in this work to generate428

training data. Firstly, the maximum masses of neu-429

tron stars less than 2.2M� and the M -R relations that430

did not satisfy the radii constraints of PSR J0740+6620431

and PSR J0030+0451 (Miller et al. 2019, 2021) were ex-432

cluded from the training data. Then, 14 points in the433

mass regions, [M�,Mmax] on the M -R curve were ran-434

domly chosen as “the original data points” (Mi, Ri) to435

simulate the real observations of the 14 available neu-436

tron stars. To consider the errors in the observations,437

the variances of the Gaussian distributions about the438

mass and radius, �Mi and �Ri , were randomly taken439

from the uniform distribution in the ranges, [0,M�] and440

[0, 5km]. The deviations of mass and radius (�Mi,�Ri)441

were calculated by the Gaussian distribution with the442

variances of �Mi and �Ri . Finally the “real data443

point” (Mi +�Mi, Ri +�Ri) was obtained. The set444

(Mi +�Mi, Ri +�Ri, �Mi , �Ri) can be compared to445

the observational data of neutron stars.446

A group of i = 14 data points (Mi, Ri) was se-447

lected from the M -R curve generated by each EOS, and448

j = 100 groups of di↵erent variances (�Mij ,�Rij ) were449

randomly sampled for each Mi-Ri data point. Later,450

k = 100 groups of deviations, �Mijk and �Rijk were451

provided by each variance set, (�Mij ,�Rij ). In this way,452

100⇥ 100 sets of data for each EOS were prepared and453

14 data points were sampled. The above process was454

repeated by 500 times to include as wide a range as pos-455

log p [MeV/fm3]
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Figure 11. Schematic flow of data generation procedure for the analysis in section 4.

σM = 0.1M! and σR = 0.5 km, for all ∆Mi and ∆Ri. In reality, however, they should vary
for different i, i.e., σM,i and σR,i should correspond to the observational uncertainties of
(Mi, Ri). To deal with the real observational data, the revised procedure for sampling the
M -R points is sketched in figure 11. We need to design the NN with an input of information
including σM,i and σR,i: the input variables are extended to (Mi, Ri; σM,i, σR,i).

We shall recapitulate the data generation scheme as follows. In the same way as in
section 3 we prepare 5 EoS parameters c2s,i (i = 1, . . . 5) in the output side. In this section
the training data comprises 14×4 input parameters, i.e., (Mi, Ri; σM,i, σR,i) (i = 1, . . . , 14).
We note that i runs to not 15 but 14 corresponding to the number of observed neutron stars
as explained in section 4.1. We calculate the M -R curve for each EoS, and then select 14
points of (M∗

i , R
∗
i ) on the M -R curve and add statistical fluctuations of ∆Mi and ∆Ri [see

figure 11 (3)]. Let us go into more detailed procedures now. Unlike σM and σR in section 3
here we randomly generate σM,i and σR,i differently for i = 1, . . . 14. These variances, σM,i

and σR,i, are sampled from the uniform distributions, [0,M!) and [0, 5 km), respectively.
In view of the observational data, these ranges of the distributions should be sufficient to
cover the realistic situations. Then, ∆Mi and ∆Ri are sampled according to the Gaussian
distributions with these variances, σM,i and σR,i. Finally we obtain the training data,
(Mi = M∗

i + ∆Mi, Ri = R∗
i + ∆Ri;σM,i,σR,i) (i = 1, . . . 14) [see figure 11 (4)]. Hereafter

we call these 14 tetrads of (Mi, Ri;σM,i,σR,i) an observation.
Now we prepare the training data set by taking multiple observations. For each EoS

we randomly generate 100 different pairs of (σM,i,σR,i), and then we make another 100
observations for each (σM,i,σR,i). From the former 100 pairs the NN is expected to learn
that the observational uncertainties may vary, and the latter tells the NN that the genuine
M -R relation may deviate from the observational data. In total we make ns = 10000
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sible, resulting in 500 ⇥ 100 ⇥ 100 = 5, 000, 000 sets,456

where one set includes 14 data points.457

For the architecture of the NN, the Python library,458

Keras (Chollet et al. 2015) was employed, with Tensor-459

Flow (Abadi et al. 2016) as the backend. The number460

of NN layers, their corresponding neurons, and the ac-461

tivation functions are shown in Table 1. The hyperbolic462

tangent function of the output layer makes the results463

fall between (�1, 1), speeding up the training. The msle464

is chosen as the loss function, given in Eq. (19). The op-465

timization method was Adam (Kingma & Ba 2014) by466

taking the batch size as 1000. The default initialization467

NN argument was the Glorot Uniform distribution (Glo-468

rot & Bengio 2010).469

The DNN models for a full training set of 5, 000, 000470

data were compare with a random sampling of471

1, 000, 000 data in the training set, giving similar re-472

sults, but with the latter greatly improving the training473

e�ciency. In addition, for all models, the changes in loss474

functions for the training of epoch were almost identical.475

The loss functions estimated for the validation data and476

training data are shown as an example in Fig. 4. When477

the epoch > 10, the verification loss is consistent with478

the training loss, whereas when the epoch > 100, the479

verification loss is stable. Therefore, each DNN model480

was trained with 1, 000, 000 data. The validation set481

was taken as the 10, 000 sets from the rest 4, 000, 000482

sets to check the convergence. Once the epoch = 100,483

the model was considered finished.484

Figure 4. The Loss probabilities as functions of epoch with
the training data and validation data.

485

486

Due to the di↵erences in initial input and training487

data, there was some uncertainty about the output re-488

sults of the DNN. Therefore, the process was repeated489

100 times to generate 100 independent DNN models.490

The uncertainties in the training results were estimated491

from the predicted 100 EOSs. In Fig. 5, 200 relations492

about �-ln p from scheme 1 in panel (a) and scheme 2 in493

panel (b) are reconstructed through the training data of494

the DNN. Each curve is smoothly connected with seven495

output points by the GPR method, as shown in the in-496

serts. It was found that most of these curves have simi-497

lar pressure-dependence behaviors. Their di↵erences in-498

crease in the high-density region due to the observation499

discrepancies associated with the 14 neutron stars.500

Figure 5. The 200 DNN models about �-ln p from schemes
1 and 2.
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502

The �-ln p relations must be converted to the ✏-p func-503

tion by integrating the Eq. (14) to obtain the EOS of504

the neutron star. In Fig. 6, the neutron star EOSs with505

the 68% and 95% confidence levels from the DNN with506

scheme 1 in panel (a) and scheme 2 in panel (b) are507

shown and compared to those joint constraints from the508

GW170817 and GW190814 events (Abbott et al. 2020)509

and the EOS from DDME1. In the inserts, the origi-510

nal 200 EOSs from the DNN training are plotted. To511

analyze the uncertainties of the EOSs, it was assumed512

that the pressures at each energy density from the ma-513

chine learning model satisfy the Gaussian distribution.514

Therefore, the mean EOS was obtained as the dashed515
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present work are almost identical, which are also consistent
with the model-informed prior. Since all of them are more
strictly constrained by the theoretical EOSs. On the contrary,
the model-agnostic prior has a loose boundary. It may consider
a greater range of plausible EOSs.

To produce an EOS of neutron stars (including the high-
density region) with the GPR method and aforementioned
schemes, seven pressure points p iln 1, 2, , 7i ( )"� were
selected, with the same interval, in the range of pln 1, 7[ ]� . fi
was randomly generated in the training interval at each pln i
point as an initial data set p, lni i( )G . The EOS below nuclear
saturation density was chosen as the one from the SLy4 set. A
smooth and continuous pln( )G function is fitted by the GPR
method, where the hyperparameters, l and σ, are obtained by
maximizing the marginal log-likelihood, as shown in
Equation (11). Furthermore, the star point, pln 11 ( )G G� � ,
was fixed as the magnitude from the DDME1 parameter set.

The M–R relation of a neutron star can be calculated using
the EOS from the GPR method by solving the TOV equation.
In the present framework, the training data set of the DNN
should assemble the points on the M–R curve, which
correspond to the observables. The method proposed by

Fujimoto et al. (2021) is used in this work to generate training
data. First, the maximum masses of neutron stars less than
2.2Me and the M–R relations that did not satisfy the radii
constraints of PSR J0740+6620 and PSR J0030+0451 (Miller
et al. 2019, 2021) were excluded from the training data. Then,
14 points in the mass regions, M M, max[ ]: on the M–R curve
were randomly chosen as the original data points (Mi, Ri) to
simulate the real observations of the 14 available neutron stars.
To consider the errors in the observations, the variances of the
Gaussian distributions about the mass and radius, MiT and RiT ,
were randomly taken from the uniform distribution in the
ranges, M0,[ ]: and 0, 5km[ ]. The deviations of mass and
radius M R,i i( )% % were calculated by the Gaussian distribution
with the variances of MiT and RiT . Finally the real data
point M M R R,i i i i( )� % � % was obtained. The set
M M R R, , ,i i i i M Ri i( )T T� % � % can be compared to the
observational data of neutron stars.
A group of i= 14 data points (Mi, Ri) was selected from the

M–R curve generated by each EOS, and j= 100 groups of
different variances ,M Rij ij( )T T were randomly sampled for each
Mi–Ri data point. Later, k= 100 groups of deviations, ΔMijk
and ΔRijk were provided by each variance set, ,M Rij ij( )T T . In
this way, 100× 100 sets of data for each EOS were prepared
and 14 data points were sampled. The above process was
repeated by 500 times to include as wide a range as possible,
resulting in 500 × 100 × 100 = 5 million sets, where one set
includes 14 data points.
For the architecture of the NN, the Python library,

keras (Chollet et al. 2015) was employed, with
TensorFlow (Abadi et al. 2016) as the backend. The number
of NN layers, their corresponding neurons, and the activation
functions are shown in Table 1. The hyperbolic tangent
function of the output layer makes the results fall between (−1,
1), speeding up the training. The msle is chosen as the loss
function, given in Equation (19). The optimization method was
Adam (Kingma & Ba 2014) by taking the batch size as 1000.
The default initialization NN argument was the Glorot uniform
distribution (Glorot & Bengio 2010).
The DNN models for a full training set of 5 million data were

compared with a random sampling of 1 million data in the training
set, giving similar results, but with the latter greatly improving the
training efficiency. In addition, for all models, the changes in loss

Figure 2. The generation range of f–- pln . We will randomly select points
within this range and then use the GPR method to generate EOS. In panel (a)
the nine EOSs are treated to obtain the mean μ and variance σ, whose 95%
confidence interval is taken to obtain the fitting range. In panel (b), the
generation range is based on the DDME1 curve, with a fluctuation of 0.3.

Figure 3. The corresponding ò−p relations of schemes 1 and 2 in Figure 2 and
the model-informed and model-agnostic priors in the Bayesian inference
method by Landry & Essick (2019).

5
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Figure 2. The generation range of �-ln p. We will randomly
select points within this range and then use GPR method to
generate EOS. In panel (a ) the nine EOSs are treated to
obtain the mean µ and variance �, whose 95% confidence
interval is taken to obtain the fitting range. In panel (b),
the generation range is based on DDME1 curve, with a fluc-
tuation of 0.3.
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A smooth and continuous �(ln p) function is predicted416
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and � are obtained by maximizing the marginal log-418

likelihood, as shown in Eq. (11). Furthermore, the star419
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the DDME1 parameter set.421

Figure 3. The corresponding ✏�p relations of scheme 1 and
2 in Figure 2 and the model-informed and model-agnostic
priors in the Bayesian inference method by Landry and Es-
sick (Landry & Essick 2019).
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tron stars less than 2.2M� and the M -R relations that430

did not satisfy the radii constraints of PSR J0740+6620431

and PSR J0030+0451 (Miller et al. 2019, 2021) were ex-432

cluded from the training data. Then, 14 points in the433

mass regions, [M�,Mmax] on the M -R curve were ran-434

domly chosen as “the original data points” (Mi, Ri) to435

simulate the real observations of the 14 available neu-436

tron stars. To consider the errors in the observations,437

the variances of the Gaussian distributions about the438

mass and radius, �Mi and �Ri , were randomly taken439

from the uniform distribution in the ranges, [0,M�] and440

[0, 5km]. The deviations of mass and radius (�Mi,�Ri)441

were calculated by the Gaussian distribution with the442

variances of �Mi and �Ri . Finally the “real data443

point” (Mi +�Mi, Ri +�Ri) was obtained. The set444

(Mi +�Mi, Ri +�Ri, �Mi , �Ri) can be compared to445

the observational data of neutron stars.446

A group of i = 14 data points (Mi, Ri) was se-447

lected from the M -R curve generated by each EOS, and448

j = 100 groups of di↵erent variances (�Mij ,�Rij ) were449

randomly sampled for each Mi-Ri data point. Later,450

k = 100 groups of deviations, �Mijk and �Rijk were451

provided by each variance set, (�Mij ,�Rij ). In this way,452

100⇥ 100 sets of data for each EOS were prepared and453

14 data points were sampled. The above process was454

repeated by 500 times to include as wide a range as pos-455

Prior scheme1: After obtaining the mean 
and variance of φ-ln p functions from 
nine RMF parameter sets, the 95% 
confidence interval of the variance was 
selected as the generation range of φi. 
 

Prior scheme2: The φ-ln p function 
provided by DDME1 set was regarded as 
the standard, and φ ± 0.3φ are chosen 
as the upper and lower bounds of the 
generation range of φi. 

W. Zhou, J. N. Hu, Y. Zhang, and H. Shen,  Astrophys. J.  950(2023)186



23/09/2023 Jinniu Hu 21

The EOSs from the neural network 

7

sible, resulting in 500 ⇥ 100 ⇥ 100 = 5, 000, 000 sets,456

where one set includes 14 data points.457

For the architecture of the NN, the Python library,458

Keras (Chollet et al. 2015) was employed, with Tensor-459

Flow (Abadi et al. 2016) as the backend. The number460

of NN layers, their corresponding neurons, and the ac-461

tivation functions are shown in Table 1. The hyperbolic462

tangent function of the output layer makes the results463

fall between (�1, 1), speeding up the training. The msle464

is chosen as the loss function, given in Eq. (19). The op-465

timization method was Adam (Kingma & Ba 2014) by466

taking the batch size as 1000. The default initialization467

NN argument was the Glorot Uniform distribution (Glo-468

rot & Bengio 2010).469

The DNN models for a full training set of 5, 000, 000470

data were compare with a random sampling of471

1, 000, 000 data in the training set, giving similar re-472

sults, but with the latter greatly improving the training473

e�ciency. In addition, for all models, the changes in loss474

functions for the training of epoch were almost identical.475

The loss functions estimated for the validation data and476

training data are shown as an example in Fig. 4. When477

the epoch > 10, the verification loss is consistent with478

the training loss, whereas when the epoch > 100, the479

verification loss is stable. Therefore, each DNN model480

was trained with 1, 000, 000 data. The validation set481

was taken as the 10, 000 sets from the rest 4, 000, 000482

sets to check the convergence. Once the epoch = 100,483

the model was considered finished.484

Figure 4. The Loss probabilities as functions of epoch with
the training data and validation data.

485

486

Due to the di↵erences in initial input and training487

data, there was some uncertainty about the output re-488

sults of the DNN. Therefore, the process was repeated489

100 times to generate 100 independent DNN models.490

The uncertainties in the training results were estimated491

from the predicted 100 EOSs. In Fig. 5, 200 relations492

about �-ln p from scheme 1 in panel (a) and scheme 2 in493

panel (b) are reconstructed through the training data of494

the DNN. Each curve is smoothly connected with seven495

output points by the GPR method, as shown in the in-496

serts. It was found that most of these curves have simi-497

lar pressure-dependence behaviors. Their di↵erences in-498

crease in the high-density region due to the observation499

discrepancies associated with the 14 neutron stars.500

Figure 5. The 200 DNN models about �-ln p from schemes
1 and 2.

501

502

The �-ln p relations must be converted to the ✏-p func-503

tion by integrating the Eq. (14) to obtain the EOS of504

the neutron star. In Fig. 6, the neutron star EOSs with505

the 68% and 95% confidence levels from the DNN with506

scheme 1 in panel (a) and scheme 2 in panel (b) are507

shown and compared to those joint constraints from the508

GW170817 and GW190814 events (Abbott et al. 2020)509

and the EOS from DDME1. In the inserts, the origi-510

nal 200 EOSs from the DNN training are plotted. To511

analyze the uncertainties of the EOSs, it was assumed512

that the pressures at each energy density from the ma-513

chine learning model satisfy the Gaussian distribution.514

Therefore, the mean EOS was obtained as the dashed515

8

Layer Number of neurons Activation function

1(Input) 56 N/A

2 60 ReLU

3 40 ReLU

4 40 ReLU

5(Output) 6 tanh

Table 1. The setup of present DNN. The number of input and output neurons can be modified according to di↵erent network
conditions. Here, the number of neurons at output layer is 6, because �(ln p = 1) has been fixed as the value obtained from
DDME1 set.

curve with the dark blue shadow representing the 68%516

confidence level and the light blue shadow, the 95%, re-517

spectively. In the low-density region, our estimations are518

consistent with the joint constraints on the EOS from519

the GW170817 and GW190814 events. With density520

increasing, present EOSs are softer than the joint con-521

straints, since the maximum masses of the 14 neutron522

stars are just around 2M�. Furthermore, the predicted523

EOS di↵ers slightly from the EOS of DDME1 in scheme524

2, despite this being regarded as the mean value of the525

training data. In the mediate region of energy density,526

the EOS generated by the DDME1 is harder than the527

predicted one, since the radius of the neutron star from528

DDME1 is a little larger when compared with the obser-529

vations of the 14 neutron stars, as shown later. These530

results demonstrate that the EOS of the present frame-531

work is independent of the initial input of the training532

set.533534

Here, it must be emphasized that the incon-535

sistencies in EOSs predicted by LIGO-Virgo-536

KAGRA (LVK) collaborations from GW170817537

and GW190814 events, and present work are538

generated by the di↵erent theoretical frame-539

works and priors. In the LVK analysis, the EOSs540

in the priors were given by the spectral represen-541

tation and are determined by the adiabatic index542

� as shown in Refs. (Read et al. 2009) and (Lind-543

blom 2010). The EOS parameters of the prior544

ranges in LVK were choices from the 34-neutron545

star matter EOSs, including the PAL6, APR1-4,546

WFF1-3, MS1-2, and so on (Read et al. 2009).547

The maxim masses of the neutron star from these548

EOSs are in the range of 1.47 ⇠ 2.78M� and the549

radii at 1.4M� are 9.36 ⇠ 15.47 km. Correspond-550

ingly, the prior of EOSs space in the present551

framework is taken from the 9 RMF parame-552

ter sets, which only can generate the maximum553

masses of the neutron stars from 2.0 ⇠ 2.4M�.554

Therefore, the harder EOSs were predicted by555

LVK at high-density regions.556

Once the EOS of the neutron star were determined,557

its M -R relation was obtained by solving the TOV558

Figure 6. The EOSs from the nonparametric machine
learning methods with scheme 1 and 2 and comparing
to those from the joint constraints from GW170817 and
GW190814 events, and from the DDME1 set.

equation. The M -R relations from our deduced EOSs559

are plotted in Fig. 7, with 68% (dark blue) and 95%560

(light blue) confidence levels. The corresponding M -561

R distributions of the observed 14 neutron stars are562

given as contour plots. The masses of massive neu-563

tron stars, PSR J0348+0432, PSR J0740+6620, and564

PSR J1614-2230; the secondary compact object of the565

GW190814 event; and the radii of PSR J0030+0451566

and PSR J0740+6620 from the NICER are given and567

compared. The predicted EOSs from schemes 1 and 2568

nicely reproduce the neutron star observations and are569

The EOSs from 200 NN models 
W. Zhou, J. N. Hu, Y. Zhang, and H. Shen,  Astrophys. J.  950(2023)186
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able to generate massive neutron stars. Their radii are570

consistent with the results of the 14 observed neutron571

stars and the mass-radius simultaneous measurements572

from NICER. Furthermore, the M -R relation from the573

DDME1 set is shown as a solid line, which was chosen574

as the mean value to generate the training data set in575

scheme 2. Its radius at the mediate mass region is a576

little larger when compared with the 14 observed neu-577

tron stars. The output EOSs of the DNN from scheme578

1 provide smaller radii, which coincide with the distri-579

bution of observables. This shows that the final results580

of present framework is independent of the generating581

scheme for the training data.582

Figure 7. The mass-radius relation of neutron star from the
nonparametric machine learning method, the observation
distributions from 14 neutron stars, the masses of massive
neutron stars, and the radii constraints from the NICER.

583

584

In a binary neutron star merger, one neutron star will585

be deformed by the external gravitational field of an-586

other star. The magnitude of deformation is denoted as587

the tidal deformability, which is dependent on the EOS588

of the neutron star and can be extracted from the grav-589

itational wave provided by the binary neutron star. In590

the GW170817 event, the dimensionless tidal deforma-591

bility at 1.4M� was inferred as ⇤1.4 = 190+390
�120 (Abbott592

et al. 2018). In Fig. 8, the dimensionless tidal deforma-593

bilities as functions of neutron star masses from schemes594

1 and 2, with 68% and 95% confidence levels, are plot-595

ted and compared to the constraint from the GW170817596

event and the results from the DDME1 set. The ⇤ de-597

creases with the neutron star mass since it is propor-598

tional to R5/M5 of the neutron star. Therefore, the ⇤599

from the DDME1 is relatively larger. The ⇤1.4 from the600

reported machine learning framework completely satis-601

fies the measurements from the gravitational wave de-602

tection.603

Figure 8. ⇤-M relation, generated by the predicted EOSs
and compared to that from DDME1 and the values extracted
from GW170817 events.

Table 2 lists the properties of neutron stars pre-604

dicted by the DNN with nonparametric training data:605

namely, the maximum masses of neutrons stars, the606

corresponding radii, the radii at 1.4M� and 2.08M�,607

and the dimensionless tidal deformability at 1.4M� with608

68% and 95% confidence levels in schemes 1 and 2.609

These variables were compared to the results from the610

DDME1 parameter set. Both of these two schemes can611

generate the massive neutron star with a mass close to612
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The representation of EOS  
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curve, and finally generate the M -R data. The M -R data generation involves Πobs(ω),
namely, we sample observational points of neutron stars on the M -R curve, and proba-
bilistically incorporate finite observational uncertainties, which should mimic observations
in the scenario ω. The real M -R data is composed of the probability distribution for
each neutron star on the M -R plane, but in practice we should simplify ω and need to
parametrize the M -R data as well. We will discuss the parametrization later and in this
section we focus on our EoS parametrization and generation.

In designing the EoS parametrization, it is important to consider its affinity to the
physical constraints such as the thermodynamic stability and the causality, i.e, p should
be a monotonically non-decreasing function of ε, and the speed of sound, cs, should not be
larger than the speed of the light. For this reason, cs, which is derived from

c2s =
∂p

∂ε
, (2.6)

is the convenient choice as the EoS parameters to impose the physical constraints easily.
Also, we need to smoothly connect the parametrized EoS to the empirical EoS known

from the low density region. Up to the energy density of the saturated nuclear matter, ε0,
we use a conventional nuclear EoS, specifically SLy4 [27]. Because the EoS is well con-
strained by the saturation properties and the symmetry energy measurements near the sat-
uration density, this specific choice of SLy4 would not affect our final results. In the energy
region above ε0 we employ the standard piecewise polytropic parametrization and partition
a density range into a certain number of segments. In our present analysis we choose the
density range, [ε0, 8ε0], and six energy points, εi (i = 0, . . . , 5) with ε5 = 8ε0, equally sep-
arated in the logarithmic scale. Then, (εi−1, εi) (i = 1, . . . 5) form 5 segments. To be more
specific, these values are (ε0, ε1, ε2, ε3, ε4, ε5) = (150, 227, 345, 522, 792, 1200)MeV/ fm3.
The EoS parameter is the average speed of sound, c2s,i ≡ 〈c2s〉 = 〈∂p/∂ε〉 (i = 1, . . . , 5), in
i-th segment. From these definitions we see that the pressure values at the i-th segment
boundaries, pi, are read as1

pi = pi−1 + c2s,i(εi − εi−1) , (2.7)

where p0 is determined by p0 = p(ε0) from our chosen nuclear EoS, i.e., SLy4. We
make polytropic interpolation for the EoS by p = kiεγi whose exponent and coefficient
are given by

γi =
ln(pi/pi−1)
ln(εi/εi−1)

, ki =
pi
εγi
i

. (2.8)

1We can confirm that c2s,i is indeed an average in each segment under this construction as

〈c2s〉 ≡
∫ εi

εi−1

dε
εi − εi−1

c2s =
∫ εi

εi−1

dε
εi − εi−1

∂p
∂ε

= 1
εi − εi−1

∫ pi

pi−1

dp = pi − pi−1
εi − εi−1

= c2s,i.

– 8 –

The pressure values at the ith segment boundaries, pi, are 
read as 

c is the average speed of sound 

J
H
E
P
0
3
(
2
0
2
1
)
2
7
3

curve, and finally generate the M -R data. The M -R data generation involves Πobs(ω),
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bilistically incorporate finite observational uncertainties, which should mimic observations
in the scenario ω. The real M -R data is composed of the probability distribution for
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, (2.6)

is the convenient choice as the EoS parameters to impose the physical constraints easily.
Also, we need to smoothly connect the parametrized EoS to the empirical EoS known

from the low density region. Up to the energy density of the saturated nuclear matter, ε0,
we use a conventional nuclear EoS, specifically SLy4 [27]. Because the EoS is well con-
strained by the saturation properties and the symmetry energy measurements near the sat-
uration density, this specific choice of SLy4 would not affect our final results. In the energy
region above ε0 we employ the standard piecewise polytropic parametrization and partition
a density range into a certain number of segments. In our present analysis we choose the
density range, [ε0, 8ε0], and six energy points, εi (i = 0, . . . , 5) with ε5 = 8ε0, equally sep-
arated in the logarithmic scale. Then, (εi−1, εi) (i = 1, . . . 5) form 5 segments. To be more
specific, these values are (ε0, ε1, ε2, ε3, ε4, ε5) = (150, 227, 345, 522, 792, 1200)MeV/ fm3.
The EoS parameter is the average speed of sound, c2s,i ≡ 〈c2s〉 = 〈∂p/∂ε〉 (i = 1, . . . , 5), in
i-th segment. From these definitions we see that the pressure values at the i-th segment
boundaries, pi, are read as1

pi = pi−1 + c2s,i(εi − εi−1) , (2.7)

where p0 is determined by p0 = p(ε0) from our chosen nuclear EoS, i.e., SLy4. We
make polytropic interpolation for the EoS by p = kiεγi whose exponent and coefficient
are given by

γi =
ln(pi/pi−1)
ln(εi/εi−1)

, ki =
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εγi
i

. (2.8)

1We can confirm that c2s,i is indeed an average in each segment under this construction as
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p = KiεΓi (εi−1 < ε < εi)

 Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019 
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FIG. 4:

transition region, despite a good fit before it. Notably, the di↵erence is more pronounced

for the starting point in the middle range of (2✏0, 3✏0) compared to the two ends.

IV. SUMMARY

We utilized neural networks to explore the possible phase transition regions of neutron

stars. The phase transition regions were selected within the range of 2-4✏0. By fixing di↵erent

starting points and transition lengths, we obtained 22 di↵erent phase transition scenarios.

For each scenario, a data set containing 5-million data points was generated. Additionally,

considering that the neutron stars in our observational data have relatively small masses,

we imposed a 2M� constraint to better fit the M � R curve containing high-mass neutron

stars. After fitting with observational data from 17 neutron stars, it was observed that the

inclusion of the constraint partially satisfied the requirement of fitting high-mass neutron

stars.

However, there are still significant limitations in the current work. The unknown starting

point and length of the phase transition greatly increase the complexity of the neural network

7
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Phase transition regions

W. Zhou, J. N. Hu, Y. Zhang, and H. Shen,  in preparation



23/09/2023 Jinniu Hu 26

The EOS including the phase transition 

FIG. 2:

equation of state undergoes a sudden change, as shown in Figure 2. The figure displays the

equation of state for various scenarios with 68% and 95% confidence intervals, where a, b,

and c represent phase transition lengths of 0.5✏0, and d, e, and f represent phase transition

lengths of 1.0✏0, which are compared to the SLY4. In this context, shorter phase transition

lengths can result in a faster recovery of the rising trend and a harder equation of state,

leading to a larger Mmax.

The M � R curve can be calculated by solving the TOV equation, and after fitting the

equation of state, the inferred M-R relationship with 68% (deep blue) and 95% (light blue)

confidence regions is shown in Figure 3. The mass-radius distribution of the original 14

neutron stars is presented with contour lines, while the newly added three neutron stars are

shown with error bars. The black dashed line in the figure represents the 68% and 95%

confidence regions of the low-mass neutron star HESS J1731-347[13]. By comparison, it can

be observed that an early occurrence of the phase transition leads to a confidence interval

closer to that of a low-mass neutron star, while a late occurrence of the phase transition is

more likely to result in a region closer to that of a high-mass neutron star. When compared

to the case without a 2M� constraint, Figure 4 shows that the sound speed in the range of

5
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The Mass-Radius relations with PT 

FIG. 3:

[✏0, 2✏0] is relatively similar, but the equation of state with the 2M� constraint exhibits a

higher sound speed after the phase transition. It is evident that the 2M� constraint enables

the fitting to obtain a mass-radius curve with a larger Mmax.

Table II and III present some neutron star properties obtained from the fitting of DNNs.

Here,

⌘ ⌘ ⇢�/⇢+ � 1,

where ⇢�(⇢+) is the density at the top of the exotic phase (bottom of the hadronic phase)

It is evident that as the phase transition occurs later, the mass of the transition point also

increases. For the case of Mmax > 2M�, the maximum mass that can be reached by the

M � R curves also increases. However, a decrease in the maximum mass is observed at

✏pt = 2.5✏0.

Finally, we compare theM�R curves under di↵erent scenarios. TheM�R curves without

the 2M� constraint exhibit a similar overall trend, with comparable maximum masses and

radii despite varying degrees of bending in the phase transition region. In contrast, the

M � R curves subject to the 2M� constraint show a significant deviation after the phase
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Summary

The hadron-quark crossover in neutron star was investigated 
by the Gaussian process

The nonparametric deep neural network with Gaussian 
process was applied to extract the equation of state of 
neutron star from the observations

The first-order hadron-quark phase transition was 
preliminarily discussed with deep neural network

The physics-informed neural networks will be considered. 
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Thank you very much for 
      your attention! 
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Bayesian inference 

values in Table II are around ∼0.1 km for all masses.
This indicates that our method works surprisingly well;
remember that data points have random fluctuations by
ΔR ∼ 0.5 km. It should be noticed that, even without
neutron stars around M ¼ 0.6–0.8M⊙ in our setup, the
RMS of the corresponding radii are still reconstructed
within the accuracy of the order ∼0.1 km.

VI. DISCUSSIONS AND CONCLUSIONS

Finally, let us comment on the relation to Bayesian
analysis using symbolic notations. In our analysis we
parametrized the EoS by θ ≔ fc2s;ig, which spans parameter
space Θ, and generated EoSs by a probability distribution
PrðθÞ. Then, we sampled D ¼ fðMi; RiÞg by an observa-
tional distribution, PrðDjθÞ for each EoS. The neural
network is a function f to obtain an EoS from data points,
i.e., fðDjWÞ ∈ Θ, where W represents the fitting param-
eters. The training is actually a process to minimize the
following loss function:

L½f% ¼ hl½f%i ¼
Z

dθdD PrðθÞ PrðDjθÞlðθ; fðDÞÞ: ð4Þ

Here, let us translate Bayesian analysis into the above
language. In Bayesian analysis a prior distribution of the EoS
is assumed to be PrðθÞ. The posterior EoS distribution is
obtained by Bayesian updating; PrðθjDÞ ∝ PrðθÞ PrðDjθÞ.
To determine the most likely EoS, we can use the MAP
(maximum a posteriori) estimator,

fMAPðDÞ ¼ argmax
θ

½PrðθÞ PrðDjθÞ%: ð5Þ

This can be interpreted as an approximation of f that
minimizes Eq. (4). This means that machine learning
encompasses the existing naive Bayesian analyses for the

EoS inference from (M,R) data [15–17] as a particular limit.
Hence, an advantage of machine learning over the existing
Bayesian analyses lies in the direct design of the loss function
or optimization target, suited for problems under consider-
ation. We emphasize the generality of our method which
can be applied, with a little effort, to any underdetermined
problems; an efficient procedure to find the most likely
solution optimized with insufficient information and limited
precision.
In this work we parametrized the EoSs with a five-

segment piecewise polytrope, and assumed a uniform
distribution of squared sound velocity in each segment
to generate the training and the validation data. We trained
the five-layered neural network to obtain successful results.
Important future works include systematic investigations of
prior dependence including the parametrization and the
parameter range and distribution, performance and training
costs which depend on the EoS parametrization, training
and validation data distributions, and the neural network
design. Also it would be interesting to investigate what is
the important quantity of EoS inference by looking at the
weights and activation patterns with actual inputs inside
the trained neural network. Another interesting study would
be to test if the neural network acquired the ability to
extrapolate the EoS inference by giving an example input
which significantly differs from the typical cases in the
training data set. The currently formulated method is ideal
for forthcoming neutron star observations, but, for the
moment, the available data spread over theM-R plane with
some probability distribution. We are making progress to
adapt our method to deal with such data, which will be
reported elsewhere. We also plan to combine the Bayesian
analysis and the machine learning for better analysis as
described in, e.g., Ref. [30].
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