

Quarks and Compact Stars (QCS2023) Sept. 22–26, 2023, Yangzhou

The equations of state of compact star from machine learning

Jinniu Hu (胡金牛) School of Physics, Nankai University

hujinniu@nankai.edu.cn

23/09/2023

Introduction

- □ The hadron-quark crossover from Gaussian Process
- □ The EOS of neutron star from deep neural network
- □ The phase transitions from DNN
- □ Summary

The radii and masses

Shapiro delay measurement

The massive neutron star PSR J1614-2230 (1.928±0.017 M \odot), P. B. Demorest, et al., Nature. 467(2010)108 E. Fonseca et al., Astrophys. J. 832, 167 (2016). PSR J0348+0432 (2.01±0.04 M \odot), P. J. Antoniadis et al., Science 340, 1233232 (2013). PSR J0740+6620 (2.08±0.07 M \odot) H. T. Cromartie et al., Nat. Astron. 4, 72 (2020) M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 PSR J0952+0607 (2.35±0.17 M \odot) R. W. Romani et al. Astrophys. J. Lett. 934(2022)L17

Neutron Star Interior Composition Explorer

The NICER Measurement PSR J0740+6620 (2.08±0.07 Mo,

12.35±0.75 km) H. T. Cromartie et al., Nat. Astron. 4, 72 (2020) M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 PSR J0030+0451 (1.44±0.15M☉,

13.02±1.24 km) M. C. Miller et al. Astrophys. J. Lett. 887(2019)L42

23/09/2023

The data of neutron star

4

副

D. Farrell, et al. J. Cosm. Astro. Phys. 2(2023)016

23/09/2023

>> Parametric Bayesian inference

F. Özel, G. Baym, and T. Güver, Phys. Rev. D 82 (2010) 101301(R)
A. W. Steiner, J. M. Lattimer, and E. Brown, Astrophys. J 722(2010)33
D. Alvarez-Castillo, et al. Eur. Phys. J. A 52 (2016) 69
Z. Miao, J. L. Jiang, A. Li, and L. W. Chen, Astrophys. J. Lett. 917 (2021) L22

> Nonparametric Bayesian inference

P.Landry and R. Essick, Phys. Rev. D 99 (2019) 084049
P.Landry, R. Essick, and K. Chatziioannou, Phys. Rev. D 101 (2020) 123007
M. Han, J. Jiang, S. Tang, Y. Fan, Astrophys. J. 919 (2021) 11

> Support Vector Machine

P. Magierski and P. H. Heenen, Phys. Rev. C 65(2002)045804

> Deep neutral network

Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019

Y. Fujimoto, K. Fukushima, K. Murase, JHEP, 2021 (2021) 1

D. Farrell, et al. J. Cosm. Astro. Phys. 2(2023)016

L. Guo, J. Xiong, Y. Ma, Y. Ma, arXiv:2309.11227

□ Introduction

- The hadron-quark crossover from Gaussian Process
- □ The EOS of neutron star from deep neural network
- □ The phase transitions from DNN
- □ Summary

Quark-Hadron pasta phase

RED: quark matter BLUE: hadron matter

Maxwell

- Clear phase boundary.
- No mix phase.

Gibbs

- Clear phase boundary.
- With mix phase.

3-Window

• No clear phase boundary

Courtesy from Bai Zhan's slide

23/09/2023

B/IVC

The Gaussian process in 3-windows

The Pressure interpolated method G. Baym, et al., Rep. Prog. Phys. 81(2018)056902

 $P(\rho) = P_H(\rho)w_-(\rho) + P_Q(\rho)w_+(\rho),$

The energy interpolated method

$$\varepsilon(\rho) = \varepsilon_H(\rho) w_-(\rho) + \varepsilon_Q(\rho) + \varepsilon_Q(\rho) + \Delta \varepsilon$$

$$\Delta \varepsilon = \rho \int_{\bar{\rho}}^{\rho} (\varepsilon_H(\rho) + \varepsilon_Q(\rho) + \varepsilon_Q(\rho)) \frac{g(\rho')}{\rho'} d\rho'$$

The chemical potential interpolated method

$$\mathcal{P}(\mu_{\mathrm{BL}}) = P_{\mathrm{H}}(\mu_{\mathrm{BL}}), \quad \frac{\partial \mathcal{P}}{\partial \mu_{\mathrm{B}}}\Big|_{\mu_{\mathrm{BL}}} = \frac{\partial P_{\mathrm{H}}}{\partial \mu_{\mathrm{B}}}\Big|_{\mu_{\mathrm{BL}}}, \cdots$$
$$\mathcal{P}(\mu_{\mathrm{BU}}) = P_{\mathrm{Q}}(\mu_{\mathrm{BU}}), \quad \frac{\partial \mathcal{P}}{\partial \mu_{\mathrm{B}}}\Big|_{\mu_{\mathrm{BU}}} = \frac{\partial P_{\mathrm{Q}}}{\partial \mu_{\mathrm{B}}}\Big|_{\mu_{\mathrm{BU}}}, \cdots$$

400

 $\mu=\mu_{0\mathrm{BL}}$

 $g(\rho) = \frac{2}{\Gamma} (e^X + e^{-X})^{-2},$

 $n_{\mathbf{X}}(\mu_{\underline{\mathbf{BL}}}) \frac{\mathcal{R} 2 n_{0}^{\bar{\rho}}}{\Gamma}.$

23/09/2023

Jinniu Hu

周大學

The Gaussian process

國南周大學

Assume the function K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 935(2022)88 y=f(x). to satisfy

$$\begin{bmatrix} f(x_1) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu(x_1) \\ \mu(x_2) \\ \vdots \\ \mu(x_n) \end{bmatrix}, \begin{bmatrix} \kappa(x_1, x_1) & \kappa(x_1, x_2) & \dots & \kappa(x_1, x_n) \\ \kappa(x_2, x_1) & \kappa(x_2, x_2) & \dots & \kappa(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \kappa(x_n, x_1) & \kappa(x_n, x_2) & \dots & \kappa(x_n, x_n) \end{bmatrix} \right)$$

The observation data is

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_n, y_n)$$

The prediction value of f is

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \\ \hline f(x_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \hline 0 \\ \hline 0 \end{bmatrix}, \begin{bmatrix} \kappa(x_1, x_1) & \kappa(x_1, x_2) & \dots & \kappa(x_1, x_n) & \kappa(x_1, x_*) \\ \kappa(x_2, x_1) & \kappa(x_2, x_2) & \dots & \kappa(x_2, x_n) & \kappa(x_2, x_*) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \kappa(x_n, x_1) & \kappa(x_n, x_2) & \dots & \kappa(x_n, x_n) & \kappa(x_n, x_*) \\ \hline \kappa(x_*, x_1) & \kappa(x_*, x_2) & \dots & \kappa(x_n, x_*) & \kappa(x_*, x_*) \end{bmatrix} \right)$$

23/09/2023

It can be use the matrix notation

$$\begin{bmatrix} \mathbf{y} \\ f(x_{\star}) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{0} \\ 0 \end{bmatrix}, \begin{bmatrix} K(\mathbf{X}, \mathbf{X}) & K(x_{\star}, \mathbf{X}) \\ K(\mathbf{X}, x_{\star}) & K(x_{\star}, x_{\star}) \end{bmatrix} \right)$$

where the mean function is zero for notational simplicity. The distribution of prediction point can be obtained

 $f(x_{\star}) \mid \mathbf{y} \sim \mathcal{N}\left(K(x_{\star}, \mathbf{X}) K(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}, K(x_{\star}, x_{\star}) - K(x_{\star}, \mathbf{X}) K(\mathbf{X}, \mathbf{X})^{-1} K(\mathbf{X}, x_{\star}) \right)$

11

The Hadron and Quark phases

The Lagrangian of Hadron phase

$\int_{DMT} = \sum \bar{\psi} \int_{i} i \gamma^{\mu} \partial_{\mu} = (M_{i} - q_{i} \sigma)$	L(MeV)	50.0	70.0	90.0	110.0
$\sim_{\text{RMF}} - \sum_{i=n}^{n} \varphi_i \left(i + O_{\mu} - (i H_i - S_{\sigma} O) \right)$	$g_{ ho}$	12.8202	10.3150	9.3559	8.8192
	$\Lambda_{\mathbf{v}}$	0.0420	0.0220	0.0098	0.0011
$a^{\mu}\left(a^{\mu}\right) = \left(\frac{g_{\rho}}{\sigma} \overrightarrow{\sigma}\right)$	$E_{\rm sym}(\rho_0)({\rm MeV})$	31.68	33.94	35.74	37.27
$= \gamma \left(g_{\omega} \omega_{\mu} + \frac{1}{2} \gamma \rho_{\mu} \right) \int \psi_{i}$	$R_{\rm skin}^{208}$ (fm)	0.1739	0.2278	0.2571	0.2770
$+ rac{1}{2} \partial^\mu \sigma \partial_\mu \sigma - rac{1}{2} m_\sigma^2 \sigma^2 - rac{1}{3} g_2 \sigma^3 -$	$-\frac{1}{4}g_3\sigma^4$				
$-rac{1}{4}W^{\mu u}W_{\mu u}+rac{1}{2}m_{\omega}^2\omega^{\mu}\omega_{\mu}+rac{1}{4}c_3(\omega^{\mu}\omega_{\mu})^2$					
$- rac{1}{4} ec{R}^{\mu u} ec{R}_{\mu u} + rac{1}{2} m_ ho^2 ec{ ho}^\mu ec{ ho}_\mu + \Lambda_{ m v} (g_\omega^2 \omega)$	$(\mu_{\mu}\omega_{\mu})(g_{ ho}^{2}ec{ ho}^{\mu}ec{ ho}_{\mu}),$				
• 2	400				

The Lagrangian of Quark phase

$$\mathcal{L}_{\text{NJL}} = \bar{q} (i\gamma^{\mu}\partial_{\mu} - m)q + G_{S} \sum_{a=0}^{8} [(\bar{q}\lambda_{a}q)^{2} + (\bar{q}i\gamma_{5}\lambda_{a}q)^{2}] - G_{V}(\bar{q}\gamma^{\mu}q)^{2} - K \{\det[\bar{q}(1+\gamma_{5})q) + \det(\bar{q}(1-\gamma_{5})q]\},$$

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 935(2022)88

HP: L = 70 $--- QP: G_V = G_S$ 300 GPR 250 200 150 100 50 0.2 0.4 0.6 0.8 1.0 ρ_B [fm⁻³]

23/09/2023

The speed of sound

The M-R relations of neutron star -

14

Introduction

- □ The hadron-quark crossover from Gaussian Process
- □ The EOS of neutron star from deep neural network
- □ The phase transitions from DNN
- □ Summary

Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019

The representation of EOS

W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 950(2023)186 The spectral representation

 $\phi = \log\left(c^2\frac{d\varepsilon}{dp} - 1\right).$

$$\phi = \phi(\log p)$$

and

18

The training data

W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 950(2023)186

The EOSs from the neural network

刮

The mass-radius relation

The tidal deformability

23/09/2023

- Introduction
- □ The hadron-quark crossover from Gaussian Process
- □ The EOS of neutron star from deep neural network
- □ The phase transitions from DNN
- □ Summary

N piecewise polytropes representation

$$p = K_i \varepsilon^{\Gamma_i} \quad (\varepsilon_{i-1} < \varepsilon < \varepsilon_i)$$

The pressure values at the ith segment boundaries, \mathbf{p}_i , are read as

$$p_i = p_{i-1} + c_{s,i}^2(\varepsilon_i - \varepsilon_{i-1}),$$

c is the average speed of sound

$$\langle c_s^2 \rangle \equiv \int_{\varepsilon_{i-1}}^{\varepsilon_i} \frac{d\varepsilon}{\varepsilon_i - \varepsilon_{i-1}} c_s^2 = \int_{\varepsilon_{i-1}}^{\varepsilon_i} \frac{d\varepsilon}{\varepsilon_i - \varepsilon_{i-1}} \frac{\partial p}{\partial \varepsilon} = \frac{1}{\varepsilon_i - \varepsilon_{i-1}} \int_{p_{i-1}}^{p_i} dp = \frac{p_i - p_{i-1}}{\varepsilon_i - \varepsilon_{i-1}} = c_{s,i}^2.$$

Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D, 98 (2018) 023019

23/09/2023

The speeds of sound from DNN

W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, in preparation

23/09/2023

The EOS including the phase transition

W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, in preparation

23/09/2023

Jinniu Hu

周大

W. Zhou, J. N. Hu, Y. Zhang, and H. Shen, in preparation

23/09/2023

Jinniu Hu

大

周

Introduction

- □ The hadron-quark crossover from Gaussian Process
- □ The EOS of neutron star from deep neural network
- □ The phase transitions from DNN
- **Summary**

國南間大學

The hadron-quark crossover in neutron star was investigated by the Gaussian process

The nonparametric deep neural network with Gaussian process was applied to extract the equation of state of neutron star from the observations

The first-order hadron-quark phase transition was preliminarily discussed with deep neural network

The physics-informed neural networks will be considered.

Thank you very much for your attention!

Bayesian inference

$$f_{\text{MAP}}(\mathcal{D}) = \arg \max_{\boldsymbol{\theta}} [\Pr(\boldsymbol{\theta}) \Pr(\mathcal{D}|\boldsymbol{\theta})].$$

Neural network: minimize

$$L[f] = \langle \ell[f] \rangle = \int d\theta d\mathcal{D} \operatorname{Pr}(\theta) \operatorname{Pr}(\mathcal{D}|\theta) \ell(\theta, f(\mathcal{D})).$$

Neural network allows for more general choice of loss functions Bayesian inference assumes parametrized likelihood functions.