Pulsar glitch in a strangeon star model

Xiaoyu Lai 来小禹

Hubei University of Education 湖北第二师范学院

@QCS2023, Yangzhou

Outline

- Pulsars: strangeon stars ?
- Strangeon stars: glitch and recovery
- Summary

"Neutron stars": a general name of pulsar-like compact stars

 $M \sim M_{\odot}$, $R \sim 10 \ \mathrm{km}$

$$\overline{\rho} = \frac{M}{4\pi R^3 / 3} \simeq 2.4 \rho_0$$

($\rho_0 \approx 2.8 \times 10^{14} \text{ g/cm}^3$: saturated nuclear matter density)

$$\overline{\rho} = \frac{M}{4\pi R^3 / 3} \simeq 2.4 \rho_0$$

- Overlap of neucleons
- Energy scale: $E \sim 400 \text{ MeV}$
 - Strongly coupled
 - Strange quarks
- "Strangeon" = strange nucleon
- Strangeon stars

$$N_{\rm q} = ?$$

(3, 6, 9, 12, 18, ...

Solid strangeon stars

$$\begin{cases} \Gamma = U_0 / kT \sim 200 \\ U_0 \sim 100 \text{ MeV} \end{cases}$$

 \longrightarrow Melting temperature $kT \sim 0.5 \text{ MeV}$

Pulsar glitches

- A pulsar glitch is an impulsive spin-up, followed by a quasi-exponential recovery towards the steady spin-down.
- This kind of timing irregularity is widely accepted as a window into the interior structure of pulsars.

glitch magnitude:

 $\Delta\Omega/\Omega\sim 10^{-10}$ to 10^{-5}

Glitches of neutron stars

Rapid transfer of angular momentum from superfluid to the crust

• Superfluid in the crust is not enough ?

 $\Delta\Omega/\Omega$ is too large ?

(Anderson & Itoh 1975, Alpar et al. 1984, Andersson et al. 2012)

Glitches of neutron stars

Starquake produced by rearrangements of an oblate crust

• There is not enough time to build up the required strain between events

(Baym et al. 1969, Baym & Pines 1971)

- Crab $\Delta\Omega/\Omega \sim 10^{-9}$
- Vela $\Delta\Omega/\Omega \sim 10^{-6}$

(Baym & Pines 1971)

The starquake of solid strangeon stars

- Shear stress accumulation is significant
 - at both the equator and the poles for NSs
 - at the equator for SSs

Glitch magnitude

- The whole body of solid SSs can contribute to the change of I (moment of inertia),
 - so $\Delta\Omega / \Omega = -\Delta I / I$ can be larger than that of NSs.

Glitches of strangeon stars

Time interval between two successive glitches t_a

(Lai et al. 2018)

10⁻⁵

Why a glitch will recover ?

- The cracking would reduce the tangential pressure in the equatorial plane
 - > The matter in the interface (the dashed line) would move towards the

How to quantitatively describe the recovery ?

• The outflow in equator is like a "viscous flow"

PSRs	h/R	$\tau(d)$	$\tau_d(d)$	$\Delta v_g / \nu \ (10^{-9})$
B1838-04	0.005	120	80	579
J1852-0635	0.01	330	400	1144
B1823-13	0.02	55	75	2416
J1722-3632	0.02	100	240	2702
B1800-21	0.1	50	120	3910

h/R is positively correlated with $\Delta v_g/v$

Summary

- Pulars: strangeon stars?
- Starquakes of solid strangeon stars: glitch & recovery

Thank you !