QCS2023@2023.09.24

Neutron Star Properties from Low-Mass X-ray binary (LMXB)

Chang-Hwan Lee / Pusan National University

in collaboration with Myungkuk Kim, Young-Min Kim, Kyujin Kwak (UNIST)

focused on Astronomy & Astrophysics 650, A139 (2021)

Contributions to QCS

- and its Implications
- QCS2017: Strangeness in Neutron Star Cooling
- QCS2019: Chair of Organizing Committee
- QCS2023: Neutron Star Properties from Low-Mass X-ray Binary

• QCS2014: Supercritical Accretion in the Evolution of Neutron Star Binaries

Astro-Hadron Physics my main interests in Neutron Star related problems

Hadron Physics

Kaon Condensation in Dense Stellar Matter (with **D.P.Min**, **M.Rho** & **G.E.Brown**)

Science-Business-Belt Project initiated by **D.P. Min**

RAON project was approved

Transport Studies

DJBUU (new transport code) **BUD²-McGill Collaboration**

First Beam of RAON

2022.10.07

for Astro-Hadron Physics

Astrophysics

100		
13:	505	INS Binary as a source of GVV
		(with G.E.Brown@Stony Brook)
20	03	Korean Gravitational Wave Group
20	06	Nuclear physics + Astrophysics + Mathematics + Artificial Intelligence
20	09	KGWG joined LIGO Scientific Collab.
20	17	GW from NS-NS mergers
		(Multi-messenger Astrophysics)
20	22	Tidal deformability of NS
20	23	

Astro-Hadron Physics Group@PNU

Dense Nuclear & Stellar Matter Studies

for **RAON** New Rare Isotope Accelerator & **MMA** Multi-Messenger Astrophysics

BUD² Collaboration

Busan (CHL, H.S. CHO,)
Ulsan (K. KWAK, Y.-M. KIM, M. KIM,)
Daegu (Chang Ho HYUN)
Daejeon (Youngman KIM,)
Montreal (Sangyong JEON, McGill)

Contents

- Introduction & Motivation
- Mass & Radius of NS from Low-Mass X-ray binary (LMXB)
 - Monte Carlo sampling
 - Bayesian analysis •
- Discussion

By EM observations before GW

- High-mass neutron stars in X-ray binaries have been reported
- But, they are not considered as evidences of the existence of high-mass NS due to large uncertainties

J. Lattimer

NICER Neutron star Interior Composition ExploreR

- launch: June 2017, SpaceX •
- **platform**: ISS ELC (ExPRESS Logistics Carrier) •
- instrument: X-ray (0.2-12 keV) •
- objective •
 - **structure**: neutron star radii to 5%, cooling timescales
 - dynamics: stability of pulsars as clocks, properties of outbursts, oscillations, and precession
 - energetics: intrinsic radiation patterns, spectra, and luminosities

High-mass NS by NICER (X-ray : 0.2-12 keV)

WD-NS Binary (radio/Shapiro delay)

arXiv:2201.00477

Contrera, Blaschke, Carlomagno, Grunfeld, Liebbing

Black Widow Pulsar

Companion is destroyed by the strong powerful outflows, or winds, of high-energy particles caused by the neutron star

$M_{\rm NS} = 2.35 \pm 0.17 \, M_{\odot}$

THE ASTROPHYSICAL JOURNAL LETTERS, 934:L17 (6pp), 2022 August 1 © 2022. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

PSR J0952-0607: The Fastest and Heaviest Known Galactic Neutron Star

Roger W. Romani¹⁽¹⁾, D. Kandel¹⁽¹⁾, Alexei V. Filippenko²⁽¹⁾, Thomas G. Brink²⁽¹⁾, and WeiKang Zheng²⁽¹⁾

GW 170817 (**d=40 Mpc**) GRB 170817A by Fermi-GBM Kilonova/X-ray/Optical Afterglows

A new constraints by GW observations

Constraints on Equation of State

M. Kim et al. (IJMPE 2020)

 $2.14^{+0.20}_{-0.18}M_{\odot}$

Black Hole or **Neutron Star** or **Quark Star**? $2.6 M_{\odot}$

Light Black Hole

- e.g., Yang et al., ApJL 901, L34 (2020)
- Tidal deformability of GW170817 prefers soft EOS
- 2.6 solar mass NS is inconsistent with soft EOS (requires hard EOS)
- •
- **Strange Quark Star**
 - e.g., Bombaci et al., PRL 126, 162702 (2021) Drago & Pagliara, PRD 102, 063003 (2020)
 - Two track scenario

... ...

NS and QS may coexist

Light BH may be formed **by accretion** (not from direct collapse of giant stars)

Low-Mass X-ray Binaries

With Myungkuk Kim, Young-Min Kim, Kyujin Kwak

A&A 650, A139 (2021) https://doi.org/10.1051/0004-6361/202038126 © ESO 2021

Measuring the masses and radii of neutron stars in low-mass X-ray binaries: Effects of the atmospheric composition and touchdown radius

Myungkuk Kim¹, Young-Min Kim¹, Kwang Hyun Sung¹, Chang-Hwan Lee², and Kyujin Kwak¹

Low-Mass X-ray binary (low-mass companion)

Table 9

Most Probable Values for Masses and Radii for Neutron Stars Constrained to Lie on One Mass Versus Radius Curve

Object	$M(M_{\odot})$	<i>R</i> (km)	$M(M_{\odot})$	<i>R</i> (km
	$r_{ m ph}$	= R	$r_{\rm ph}$)	$\gg R$
4U 1608–522	$1.52^{+0.22}_{-0.18}$	$11.04^{+0.53}_{-1.50}$	$1.64^{+0.34}_{-0.41}$	11.82^{+0}_{-0}
EXO 1745–248	$1.55^{+0.12}_{-0.36}$	$10.91\substack{+0.86 \\ -0.65}$	$1.34_{-0.28}^{+0.450}$	11.82^{+0}_{-0}
4U 1820–30	$1.57^{+0.13}_{-0.15}$	$10.91\substack{+0.39 \\ -0.92}$	$1.57^{+0.37}_{-0.31}$	11.82^{+0}_{-0}
M13	$1.48^{+0.21}_{-0.64}$	$11.04^{+1.00}_{-1.28}$	$0.901\substack{+0.28\\-0.12}$	12.21^{+0}_{-0}
ω Cen	$1.43^{+0.26}_{-0.61}$	$11.18^{+1.14}_{-1.27}$	$0.994^{+0.51}_{-0.21}$	12.09^{+0}_{-0}
X7	$0.832^{+1.19}_{-0.051}$	$13.25^{+1.37}_{-3.50}$	$1.98^{+0.10}_{-0.36}$	$11.3^{+0.1}_{-1.1}$

Steiner, Lattimer, Brown, ApJ 2010

95% confidence limits by using MC sampling (for fixed NS mass)

In this talk, I will focus on

- Simultaneous measurement of neutron star Mass & Radius

Low-Mass X-ray Binaries (LMXB) with Photospheric Radius Expansion (PRE)

Photospheric Radius Expansion (PRE) XRB

Observations (F_D, T; distance)

M, R

Equations of state

LMXBs considered in our work

Table 1. Observational properties of six LMXBs that show PRE XRBs.

Source	App. angular area (km/10 kpc) ²	Touchdown flux $(10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1})$	Spin freq. ^(a) (Hz)	Distance ^(a) (kpc)
4U 1820–30	89.9 ± 15.9	5.98 ± 0.66	• • •	$7.6 \pm 0.4 (4)$ 8 4 ± 0.6 (5.6)
SAX J1748.9–2021	89.7 ± 9.6	4.03 ± 0.54	410 (1)	$8.4 \pm 0.0 (3-0)$ $8.2 \pm 0.6 (4, 5, 7)$
EXO 1745–248	117.8 ± 19.9	6.69 ± 0.74	504 (0)	$6.3 \pm 0.63^{(b)} (8-9)$
4U 1724–207	96.0 ± 7.9 113.8 ± 15.4	4.71 ± 0.52 5.29 ± 0.58	524 (2)	$7-9^{(6)}(10)$ 7.4 ± 0.5
4U 1608–52	314 ± 44.3	18.5 ± 2.0	620 (3)	$4.0 \pm 2.0, D_{\rm cutoff} > 3.9$ ^(d)

Our strategy

Observations

Steiner et al., ApJ 722, 33 (2010)

Method 1 Monte Carlo sampling

(M. Kim)

(*F_D*,*T*; distance)

Ozel et al., ApJ 820, 28 (2016)

Method 2

Bayesian analysis (NS EOS is used) (Y.-M. Kim)

M, R

Method 1: Monte Carlo sampling (by M. Kim)

Basic observations : flux, spectrum (blackbody temperature)

before corrections

Touch down flux $F_{\mathrm{TD},\infty} =$

 $A \equiv$ Apparent angular area

> $\kappa = 0.2(1$ **Opacity**

$$\frac{GMc}{\kappa D^2} \left(1 - \frac{2GM}{Rc^2}\right)^{1/2}$$
$$\frac{F_{\infty}}{\sigma T_{bb,\infty}^4} = f_c^{-4} \frac{R^2}{D^2} \left(1 - \frac{2GM}{Rc^2}\right)^{-1}$$

$$+X) \ {\rm cm}^2 \ {\rm g}^{-1}$$

X: hydrogen mass fraction in H-He plasma

Systematic treatments

Color-correction factor

- Change of the effective area due to the atmospheric effect
- Cooling tail method
 - Spectral evolution during the cooling phase due to the atmosphere of NS • (surface gravity & chemical composition)

Chemical composition of the photosphere

• H-He plasma

- $\kappa = 0.2(1 + X) \text{ cm}^2 \text{ g}^{-1}$
- X: hydrogen mass fraction in H-He plasma

·		

Flux, Color temperature, Apparent area $(r_{ph} = R)$

$$\begin{split} F_{\rm TD,\infty} &= \frac{GMc}{\kappa D^2} \left(1 - \frac{2GM}{Rc^2} \right)^{1/2} \\ & \left[1 + \left(\frac{kT_{\rm c}}{38.8 \, {\rm keV}} \right)^{a_g} \left(1 - \frac{2GM}{Rc^2} \right)^{-a_g/2} \right], \\ \text{where} \\ a_g &= 1.01 + 0.067 \log \left(\frac{g_{\rm eff}}{10^{14} \, {\rm cm \, s^{-2}}} \right), \\ g_{\rm eff} &= \frac{GM}{R^2} \left(1 - \frac{2GM}{Rc^2} \right)^{-1/2}, \end{split}$$

$$T_{\rm c} = f_{\rm c} \left(\frac{g_{\rm eff}c}{\sigma\kappa}\right)^{1/4} = f_{\rm c} \left(\frac{GMc}{\sigma\kappa R^2}\right)^{1/4} \left(1 - \frac{2GM}{Rc^2}\right)^{-1/8}.$$

$$A = f_{\rm c}^{-4} \frac{R^2}{D^2} \left(1 - \frac{2GM}{Rc^2}\right)^{-1} \left\{1 + \left[\left(0.108 - 0.096\frac{M}{M_{\odot}}\right) + \left(-0.061 + 0.114\frac{M}{M_{\odot}}\right)\frac{R}{10\,\rm km} - 0.128\left(\frac{R}{10\,\rm km}\right)^2\right]\right\}$$

$$\left(\frac{f_{\rm NS}}{1000\,\rm Hz}\right)^2\right\}^2.$$

 $r_{\rm ph} \neq R$

$$\begin{split} F_{\text{TD},\infty} &= \frac{GMc}{\kappa D^2} \left(1 - \frac{2GM}{r_{\text{ph}}c^2} \right)^{1/2} \\ & \left[1 + \left(\frac{kT_c}{38.8 \,\text{keV}} \right)^{a_g} \left(1 - \frac{2GM}{r_{\text{ph}}c^2} \right)^{-a_g/2} \right], \end{split}$$
where
$$a_g &= 1.01 + 0.067 \log \left(\frac{g_{\text{eff}}}{10^{14} \,\text{cm s}^{-2}} \right), \end{aligned}$$

$$g_{\text{eff}} &= \frac{GM}{r_{\text{ph}}^2} \left(1 - \frac{2GM}{r_{\text{ph}}c^2} \right)^{-1/2}, \end{aligned}$$

$$T_c &= f_c \left(\frac{g_{\text{eff}}c}{\sigma\kappa} \right)^{1/4} = f_c \left(\frac{GMc}{\sigma\kappa r_{\text{ph}}^2} \right)^{1/4} \left(1 - \frac{2GM}{r_{\text{ph}}c^2} \right)^{-1/8}. \end{split}$$

touchdown radius parameter

Modifications

Touchdown Flux (ratio)

causality limit

NS spin frequency

 $f_{\rm NS}$

Apparent angular area (ratio)

Double solutions are allowed in MC sampling

SAX J1748.9-2021

X: hydrogen mass fraction

4U 1820-30

Most probable values of M & R

Most probable M,R

Abbott et al. (LSC and Virgo), PRL 121.161101

Consistent

M. Kim, Y.-M. Kim et al. (A&A 2021)

Method 2: Bayesian analysis (by Y.-M. Kim)

- Posterior probability distribution
- Parameter set
- Likelihood
- Prior of the parameter set of the model $P(\theta) = P(R)P(M)P(D)P(f_{\rm NS})P(f_{\rm c})P(X)P(h)$
- (flat distribution for unknown quantities without using EOS)

Mass-Radius estimation by Bayesian.

 $2R_{\rm NS}$ h = $r_{\rm ph}$

Discussions on LMXBs

- LMXBs are good laboratories for NS physics
 - Photosphere is likely to be **H-poor** regardless of the energy generation mechanism below.
 - Touchdown is likely to occur **away** from the neutron star surface.
 - Bounds of NS radius is consistent with the results of LIGO/Virgo (based on tidal • deformability of GW170817).
- Future observations of LMXBs will be able to give more constraints on NS masses & radii, and check the possibilities of Quark Stars.
- Effects of accretion disk in LMXBs are in progress.

Symmetry yangzhou@2023.09.22

