#### Neutron star mass and radius constraints using the high-frequency QPOs of GRB 200415A

Hajime SOTANI (RIKEN)

collaborate with

K. D. Kokkotas (Tuebingen), N. Stergioulas (Thessaloniki) arXiv:2303.03150

#### Result







# Magnetar QPOs & crust oscillations

- Quasi-periodic oscillations (QPOs) in afterglow of giant flares from soft-gamma repeaters (SGRs) (Barat+83, Israel+05, Strohmayer & Watts 05, Watts & Strohmayer 06)
  - SGR 0526-66 (5<sup>th</sup>/3/1979) : 43 Hz
  - SGR 1900+14 (27<sup>th</sup>/8/1998) : 28, 54, 84, 155 Hz
  - SGR 1806-20 (27<sup>th</sup>/12/2004) : 18, 26, 30, 92.5, 150, 626.5, 1837 Hz
    - additional QPO in SGR 1806-20 : 57 Hz (Huppenkothen+14)
    - additional QPOs : 51.4, 97.3, 157 Hz (Miller+18)



# Constraint on L from magnetar QPOs

• nuclear saturation parameters

$$w = w_0 + \frac{K_0}{18n_0^2}(n_{\rm b} - n_0)^2 + \left[S_0 + \frac{L}{3n_0}(n_{\rm b} - n_0)\right]\alpha^2$$

- Double-layer model (lasagna sandwich)
  - -L = 58-73 MeV (HS + 2019)
- Constraint on  $K_0$ :  $K_0 = 240 \pm 20$  MeV (Shlomo+2006)
- Constraint on L
  - $L = 60 \pm 20 \text{ MeV}$ : fiducial value (Li+2019)
  - L = 58 73 MeV : constraint from QPOs (HS+2019)



# QPOs are newly found

#### Article

# Very-high-frequency oscillations in the main peak of a magnetar giant flare

| https://doi.org/10.1038/s41586-021-0410 | 1-1 |
|-----------------------------------------|-----|
| Received: 17 August 2020                |     |
| Accepted: 6 October 2021                |     |
| Published online: 22 December 2021      |     |
| Check for updates                       |     |

A. J. Castro-Tirado<sup>1,2</sup>, N. Østgaard<sup>3 \veeta</sup>, E. Göğüş<sup>4 \veeta</sup>, C. Sánchez-Gil<sup>5</sup>, J. Pascual-Granado<sup>1</sup>, V. Reglero<sup>6,7</sup>, A. Mezentsev<sup>3 \veeta</sup>, M. Gabler<sup>6 \veeta</sup>, M. Marisaldi<sup>3,8 \veeta</sup>, T. Neubert<sup>9</sup>, C. Budtz-Jørgensen<sup>9</sup>, A. Lindanger<sup>3</sup>, D. Sarria<sup>3</sup>, I. Kuvvetli<sup>9</sup>, P. Cerdá-Durán<sup>6</sup>, J. Navarro-González<sup>7</sup>, J. A. Font<sup>6,10</sup>, B.-B. Zhang<sup>11,12,13</sup>, N. Lund<sup>9</sup>, C. A. Oxborrow<sup>9</sup>, S. Brandt<sup>9</sup>, M. D. Caballero-García<sup>1</sup>, I. M. Carrasco-García<sup>14</sup>, A. Castellón<sup>2,15</sup>, M. A. Castro Tirado<sup>1,16</sup>, F. Christiansen<sup>9</sup>, C. J. Eyles<sup>7</sup>, E. Fernández-García<sup>1</sup>, G. Genov<sup>3</sup>, S. Guziy<sup>17,18</sup>, Y.-D. Hu<sup>1,19</sup>, A. Nicuesa Guelbenzu<sup>20</sup>, S. B. Pandey<sup>21</sup>, Z.-K. Peng<sup>11,12</sup>, C. Pérez del Pulgar<sup>2</sup>, A. J. Reina Terol<sup>2</sup>, E. Rodríguez<sup>1</sup>, R. Sánchez-Ramírez<sup>22</sup>, T. Sun<sup>1,23,24</sup>, K. Ullaland<sup>3</sup> & S. Yang<sup>3</sup>



giant gamma-ray flare (GRB 200415A) in the direction of the NGC 253 galaxy, disappearing after 3.5 msec, on 15/4/2020.

|               | LED                          |                        | HED                             |                         |
|---------------|------------------------------|------------------------|---------------------------------|-------------------------|
| Interval (Hz) | Peak Frequency               | Chance probability     | Peak Frequency                  | Chance probability      |
|               | (Hz)                         |                        | (Hz)                            |                         |
| 500 - 1100    | 835.9-84.7+77.3              | 1.2 x 10 <sup>-4</sup> | -                               | -                       |
| 1100 - 1700   | $1443.7^{-68.7}_{+74.8}^{a}$ | 4.9 x 10 <sup>-2</sup> | 1353.5 <sup>-230.7</sup> +217.7 | 1.2 x 10 <sup>-12</sup> |
| 1800 - 2400   | $2131.7^{-151.0}_{+148.2}$   | 2.4 x 10 <sup>-9</sup> | $2095.1^{-277.5}_{+180.8}$      | 5.0 x 10 <sup>-8</sup>  |
| 3900 - 4500   | $4249.7^{-102.7}_{+116.0}$   | 1.7 x 10 <sup>-4</sup> | 4126.8-71.1+73.0                | 1.1 x 10 <sup>-2</sup>  |

Observed frequencies are high

- polar type oscillations, such as f, p<sub>i</sub>-modes
- overtones of torsional oscillations

#### 1<sup>st</sup> overtone



- two parameters in EOS, two in NS models
- overtones depend on  $K_0 \& L$ 
  - f ~  $V_{\rm s} / \Delta R$  (Hansen & Cioffi 80)
  - $\Delta R$  depends on K<sub>0</sub> & L (HS+17)
- as in Sotani+ 19, frequencies can be well characterized by  $\varsigma = (K_0^4 L^5)^{1/9}$
- In fact, fre. can be expressed as  $_{\ell}t_n = d_{\ell n}^{(0)} + d_{\ell n}^{(1)}\varsigma_{100} + d_{\ell n}^{(2)}\varsigma_{100}^2$  $\varsigma_{100} \equiv \varsigma/(100 \text{MeV})$

#### 1<sup>st</sup> overtone

- frequencies increases with M/R
  - $f \sim V_s / \Delta R$  (Hansen & Cioffi 80)
  - $\Delta R/R \sim R/M$  (HS+ 17)
- one can neglect the  $\ell\text{-dep.}$  &  $N_s\!/N_d\text{-dep.}$ 
  - hereafter, we consider only the  $\ell$  =2 mode with  $N_s\!/N_d\!=\!0$
- to identify the 836 Hz QPO with the  $1^{st}$  overtone frequency, one must determine a specific value of  $\varsigma$ , depending on (M,R)



#### identification of all QPOs



- the observed QPOs in GRB 200415A can be identified with the 1<sup>st</sup>, 2<sup>nd</sup>, 4<sup>th</sup>, and 10<sup>th</sup> overtones of crustal torsional oscillations
- for NS models with  $1.6M_{\odot}$  and 12km,  $\varsigma$  should be 122 MeV for the identification.
- with different NS models, fre. shift up and down, which leads to  $\varsigma$  for identification also shifts right and left.
  - frequencies increases with M/R

# NS models for identifying QPOs



- $\varsigma$  for identifying the QPOs with various NS models
- fiducial value of  $\varsigma = 85.3 135.1 \text{ MeV}$ 
  - $L = 60 \pm 20 \text{ MeV}$
  - $K_0 = 240 \pm 20 \text{ MeV}$
- constrained from QPO obs.;  $\varsigma = 104.9 - 128.4 \text{ MeV}$ 
  - L = 58 73 MeV (HS+2018)
  - $K_0 = 240 \pm 20 \text{ MeV}$
- compared to the fiducial value of  $\varsigma$ , one can get the constraints on NS mass and radius

#### NSs constrained from GRB 200415A



QCS2023@揚州大学

#### Mass formula (HS+14)

- low-mass NSs
  - low-central density
  - EOS for a low-density region plays an important role
  - may be able to discuss the stellar mode without the core EOS
  - $1.174 M_{\odot}$  NS exists (Martinez+ 15)
- we focus on the NS models for  $\rho \leq 2\rho$





#### make constraint more severe



- low-mass NS can be expressed with  $\eta$  and  $\rho_c$ up to  $\rho_c = 2\rho_0$  (HS+ 14);  $\eta = (K_0L^2)^{1/3}$  &  $u_c \equiv \rho_c/\rho_0$   $\frac{M}{M_{\odot}} = 0.371 - 0.820u_c + 0.279u_c^2 - (0.593 - 1.254u_c + 0.235u_c^2) \left(\frac{\eta}{100 \text{ MeV}}\right)$   $z = 0.00859 - 0.0619u_c + 0.0255u_c^2 - (0.0429 - 0.108u_c + 0.0120u_c^2) \left(\frac{\eta}{100 \text{ MeV}}\right)$ • We focus on  $z = 1/\sqrt{1 - 2GM/Rc^2} - 1$ 
  - $\eta = 70.6 118.5 \text{ MeV} (\varsigma = 85.3 135.1 \text{ MeV})$
  - $\eta = 85.3 135.1 \text{ MeV} (\varsigma = 104.9 128.4 \text{ MeV})$
- suppose that the radius of NS with  $\rho_c \geq 2\rho_0$  is constant
- then, we can get the NS mass and radius constraint as an intersection

#### Comparison with other constraints



# Another possibility

- up to now, we identify the lowest QPO in GRB 200415A with the 1<sup>st</sup> overtone
- the identification with the  $2^{nd}$  overtone is also possible
  - $\varsigma$  for this identification for NS models with  $1.4 M_{\odot}$  and 14 km is relatively large
  - frequency increases with M/R
  - to identify with this correspondence, standard NS models must give us out of the fiducial value of  $\varsigma$



# Magnetic effects

• the shift in the torsional oscillations frequencies obeys the following formula (HS+2007; Gabler+2018)

$$\frac{\ell f_n}{\ell f_n^{(0)}} \approx \left[1 + \ell \alpha_n \left(\frac{B}{B_\mu}\right)^2\right]^{1/2} \quad B_\mu = 4 \times 10^{15} \,\mathrm{G}$$

- for the overtones,
  - for EOS NV  $_2\alpha_n \approx 0.8 1.1$
  - for EOS DH  $_2\alpha_n \approx 2 2.5$
- the deviation of the magnetized neutron star frequencies from those of the non-magnetized ones are
  - $\leq 3.4\%$  for the EOS NV
  - $\leq$  7.5% for the EOS DH,

if we assume B  $\approx 10^{15} {\rm G}$ 

- These values are still within the limits of uncertainty (~ 10%) estimated in Castro-Tirado+ (2021)
- So, simply we neglect the magnetic effects here.



#### Conclusion

- magnetar QPOs are newly found in a giant gamma-ray flare (GRB 200415A)
- they can be identified with the overtones of the crustal torsional oscillations
- we get the constraint on NS mass and radius
- kHz QPOs found from other short GRBs (Chirenti +23)
  - 1113, 2649 Hz in GRB 910711
  - 877, 2612 Hz in GRB 931101B

