Formation of millisecond pulsars with He WDs, ultra-compact X-ray binaries, and gravitational wave sources

> Hai-Liang Chen (陈海亮) chenhl@ynao.ac.cn

Yunnan observatories

Thomas Tauris, Xuefei Chen, Zhanwen Han

Binary millisecond pulsars

Different types of Companions

Formation of MSP+He WD binaries

Tauris & van den Heuvel 2023

Binary millisecond pulsars with extremely low mass WDs

Porb: 2~14 hr; WD mass <= 0.22 Msun Istrate et al. 2014 Istrate et al. 2014

Fine-tuning Problem Istrate et al. 2014

orb

orb

UCXB $(days)$ $(days)$.
- 그
- 그 ★ \overline{O} \circ divergent intermediate $\overline{0}$ period solution divergent systems convergent systems convergent Ω period, orbital $\overline{}$. 漱 ☆ $\dot{\circ}$ \circ Orbital e
time • onset RLO Final \therefore intermediate $\breve{}$ detachment RLO $M_2 = 1.4 M_{\odot}$ – i – i
Hubble systems \overline{O} $\overline{}$ $M_{NS} = 1.3 M_{\odot}$ \circ \circ \circ $\gamma = 5$ 3.6 5.2 2.4 2.8 3.2 4.8 $\overline{2}$ 8 10 12 16 4.4 Ω 6 $\overline{4}$ 4 4 Initial orbital period (days) Stellar age, t (Gyr) \leftarrow *p* initial \boldsymbol{p} final **Convergent:** orb orb **Grey Area:** $>$ \vec{P} initial $P_{\rm orb}^{\rm final}$ **Divergent: Orbital period range of observed MSP+ ELM WDs**orb $9 h < P_{\text{orb}}^{\text{final}}$ \boldsymbol{p} initial **Intermediate:**

Fine-tuning Problem Istrate et al. 2014

 P_{detach} PUCXB $(days)$ $(days)$ a^{\sharp} ★ \overline{O} \circ divergent intermediate $\overline{0}$ period solution convergent systems divergent systems convergent \sim period, orbital ☆ $\overline{}$. 资务 ☆ $\dot{\circ}$ \circ Orbital e
time \bullet onset RLO Final I intermediate I detachment RLO $M_2 = 1.4 M_{\odot}$ Hubble systems \overline{O} $\overline{}$ $M_{NS} = 1.3 M_{\odot}$ \circ \circ \circ $\gamma = 5$ 5.2 2.4 2.8 3.2 3.6 4.8 $\overline{2}$ \mathcal{B} 10 12 16 4.4 Ω 6 $\overline{4}$ 4 Initial orbital period (days) Stellar age, t (Gyr) \leftarrow *p* initial **Initial orbital period: 3.39--3.43 days** \boldsymbol{p} final **Convergent:** orb orb. P final $>$ \vec{P} initial **Divergent: The parameter space of LMXBs for producing detached MSP** orb orb $9 h < P_{\text{orb}}^{\text{final}}$ \boldsymbol{D} initial **Intermediate: ELM WD is too small.** orb orb

Binary evolution model

- NS mass: 1.3 Msun; Donor mass: 1.0 Msun ~ 4.0 Msun; Orbital Period: 0.40 ~ 1000 day
- Solar Metallicity
- Stellar Wind: Reimers (1975)
- Donor star: initially synchronized.
- Rotation:

Stellar evolution code

Chemical mixing: Secular shear instability, Eddington-sweet circulation, dynamical shear instability and Goldreich-Schubert-Fricke instability

Transport of angular momentum: Spruit-Tayler dynamo

Angular momentum loss

- Gravitational Wave Radiation
- Mass loss

accretion efficiency: 30%

Eddington accretion rate:

$$
\dot{M}_{\rm Edd} = \frac{4\pi G M_{\rm NS}}{c \cdot 0.20(1+X) \cdot \eta}
$$

Material not accreted by NS takes away the specific angular momentum of NS.

- Spin-orbit coupling (Paxton et al. 2015)
- Magnetic braking

$$
\frac{dJ_{gr}}{dt} = -\frac{32}{5} \frac{G^{7/2}}{c^5} \frac{M_{NS}^2 M_2^2 (M_{NS} + M_2)^{1/2}}{a^{7/2}}
$$

New magnetic braking prescription

Van et al. 2019

$$
\frac{dJ_{\rm mb}}{dt} = \frac{dJ_{\rm mb, Sk}}{dt} (\frac{\omega}{\omega_{\odot}})^{\beta} (\frac{\tau_{\rm conv}}{\tau_{\odot, \rm conv}})^{\xi} (\frac{\dot{M}_{\rm W}}{\dot{M}_{\odot, \rm W}})^{\alpha}
$$

$$
\frac{dJ_{\rm mb, Sk}}{dt} = -3.8 \times 10^{-30} M_2 R_{\odot}^4 \left(\frac{R_2}{R_{\odot}}\right)^{\gamma_{\rm mb}} \omega^3 \text{dyne cm}
$$

● Reproduce the persistent LMXBs

 \bullet Improvements in reproducing transient LMXBs

New magnetic braking prescription

$$
\frac{dJ_{\rm mb}}{dt} = \frac{dJ_{\rm mb, Sk}}{dt} (\frac{\omega}{\omega_{\odot}})^{\beta} (\frac{\tau_{\rm conv}}{\tau_{\odot, \rm conv}})^{\xi} (\frac{\dot{M}_{\rm W}}{\dot{M}_{\odot, \rm W}})^{\alpha}
$$

Van et al. 2019

$$
\frac{dJ_{\rm mb, Sk}}{dt} = -3.8 \times 10^{-30} M_2 R_{\odot}^4 \left(\frac{R_2}{R_{\odot}}\right)^{\gamma_{\rm mb}} \omega^3 \text{dyne cm}
$$

Models with $\beta = 0$, $\xi = 2$ and $\alpha = 1$ can better reproduce the observed results of X-ray binaries (Van et al. 2019).

Influence of MB on binary evolution

NS mass: 1.30 Msun, Donor mass: 1.25 Msun, Orbital period: 5.0 d

Chen et al. MNRAS, 2021

MB has an important influence on the evolution of LMXBs.

Examples of Binary evolution

Chen et al. MNRAS, 2021

NS mass: 1.30 Msun, Donor mass: 1.25 Msun, MB: intermediate

Examples of Binary evolution

Grey Area: Orbital period range of observed MSP+ ELM WDs

Initial Parameter Space

With the MB from Van et al. 2019, the parameter space for producing MSP-ELM WD and UCXBs becomes larger.

Chen et al. MNRAS, 2021

Evolution of NS+He WD binaries

Tauris & van den Heuvel 2023

Evolution of NS+He WD binaries

Chen et al. ApJ, 2022

 M_{NS} = 1.30 Msun, M₂ = 0.25 Msun, P_{orb} = 0.05 days

Evolution of NS+He WD binaries

Stability of mass transfer of NS+He WDs

Chen et al. ApJ 2022

All NS+He WD binaries can have dynamically stable mass transfer.

minimum orbital period: 1.5-4.7min (GW frequency: 7.1-22mHz)

Properties as GW sources

UCXBs are important sources for TianQin, Taiji and LISA.

Properties as GW sources

Chen et al. ApJ, 2022

The WD mass can be derived with this relation if the GW frequency is measured.

Formation of BH-UCXBs via accretion induced collapse of NSs

Chen et al. 2023, ApJ, accepted

LMXB

NS+WD

UCXB

BH (+ planet)

 $NS (+ planet)$

?

Maximum mass of NSs

NS mass from pulsar observations

PSR J1614-2230 1.908 ± 0.016 Msun (Demorest et al. 2010, Fonseca et al. 2016)

PSR J0348+0432 2.01 \pm 0.04 Msun (Antoniadis et al. 2013)

PSR 0740+6620 2.14(+0.10/-0.09) Msun (Cromartie et al. 2020)

PSR 2215+5135 2.27 \pm 0.17 Msun (Linares et al. 2018)

PSR 0952-0607 2.35 \pm 0.17 Msun (Romani et al. 2022)

Constrain from GW 170817: Maximum mass 2.16 (+0.17/-0.15) Msun (Rezzolla et al. 2018)

The maximum mass of the NSs should be around 2.20 Msun.

During the evolution phase of LMXBs, little mass is accreted by NS. Some NSs must be born with masses close to the maximum mass.

Kinematic effects of the AIC event

- During the collapse, we assume that an equivalent mass of 0.20 Msun is lost.
- The kick velocity of BH is assumed to be < 50 km/s.
- The binary separation after AIC

Tauris et al. 2013

$$
\frac{a}{a_0} = \left[\frac{1 - (\Delta M/M_0)}{1 - 2(\Delta M/M_0) - (w/v_c)^2 - 2\cos\theta (w/v_c)} \right]
$$

• The eccentricity after AIC

$$
e = \sqrt{1 + \frac{2E_{\rm orb}J_{\rm orb}^2}{\mu G^2 M_{\rm NS}^2 M_2^2}}
$$

• the post-AIC orbit will be circularized due to the tidal interatction, binary separation: $a(1-e^2)$

Initial binary parameters: M_{NS} = 2.18 Msun, M_{wd} = 0.17 Msun, P_{orb} = 0.30 days

Initial binary parameters: M_{NS} = 2.18 Msun, M_{wd} = 0.17 Msun, P_{orb} = 0.30 days

Initial binary parameters: M_{NS} = 2.18 Msun, M_{wd} = 0.40 Msun, P_{orb} = 0.02 days

Initial binary parameters: M_{NS} = 2.18 Msun, M_{wd} = 0.40 Msun, P_{orb} = 0.02 days

A new kind of ultra-luminous X-ray sources?

Summary

- With the MB prescription from Van et al. 2019, the finetuning problem is relieved.
- We found that all NS + He WD binaries can have dynamically stable mass transfer.
- The GW signal from NS + He WDs can be detected by LISA, TianQin and Taiji. There is a tight relation between the WD mass and GW frequency for UCXBs.
- We demonstrate that BH-UCXBs can be produced via accretion induced collapse of neutron stars.

Thank you !