Chinese Pulsar Timing Array First Data Release

Heng Xu (胥恒) | hengxu@bao.ac.cn National Astronomical Observatory of CAS On behalf of the CPTA collaboration (PI: Kejia Lee) SPSS2023 | FPS12 | July 3, 2023

@ Jinchen Jiang

Nanohertz Gravitational Wave & Chinese Pulsar Timing Array

Milliseconds

Bailes et al., 2021

 Pulsar Timing Array is hitherto the only known way to directly detect the nanohertz (nHz) gravitational waves (GWs). FAST timing experiment started at Apr 2019.

CPTA formally formed in 2019, aiming at directly detect the nHz GWs using Chinese radio telescopes.

CPTA became one of the key projects of FAST in 2019.

2019 Chinese Pulsar Timing Array

Observation Overview

- FAST: Tsys~20 K, Gain~16 K/Jy (Jiang et al., 2020, RAA).
- 19Beam receiver @1.25 GHz (500 MHz bandwidth).
- Data: search mode data, incoherent dedispersion.
- 57 pulsars, 17 Isolated pulsars, 40 binary pulsars.
- Data from Apr 2019 to Sep 2022, data span >~2.5 years.

	• •• •		0000
	• •		
			0000
			00000
			00000
$\bullet \bullet$	•••••		00000
	• ••• •		00000
	00000		00000
	00000		
• • •	00000		00000
	•• •		
$\bullet \bullet$			0000
-			
•	•• ••••		
	• •••••		0000
• • • •			
••			
••			
•			
•			
•			
•			
	0 0000 000		
	0000		0000
	• •••		0000
	• • • • • •		00000
	• • • • • • • • •		0000
	$\bullet \bullet \bullet \bullet \bullet$		
	• • • • • • • • • • • • • • • • • • • •		•••••
	• • • • • • • •		
	• •••••		
	• • • • • • • • • • • • • • • • • • • •		0000
2010 5			
2019.5	2020.0 202	20.5 2021.0 2021.5 2022.0 2022	2.3
XU H. et a	I. In nre	Year	

J	0	0	2	3	+	0	9	2	3
J	0	0	3	0	+	0	4	5	1
J	0	0	3	4		0	5	3	4
J	0	1	5	4	+	1	8	3	3
J	Õ	$\hat{2}$	1	8		$\hat{4}$	$\tilde{2}$	3	2
J	ñ	$\frac{2}{2}$	т Л	n N		/	2 1	2	$\tilde{\Lambda}$
J T	0	ך ע	4	0	T-'	+ っ	Т Л	こっ	U A
J	U	4	U o	0	+	3	U	5	9
J	0	5	0	9	+	0	8	5	6
J	0	6	0	5	+	3	7	5	7
J	0	6	1	3		0	2	0	0
J	0	6	2	1	+	1	0	0	2
J	ñ	6	2 2	6	Ļ	5	1	$\tilde{2}$	$\overline{\mathbf{q}}$
J	n N	6	Ј Л	5	÷	5 5	1	2 5	ç
J T	0	7	チ つ	$\frac{1}{2}$	T	いっ	コン	J 1	0
J	U	/	3	<u>_</u>	+	<u>_</u>	3	l	4
J	0	1	5	ŀ	+	l	8	0	7
J	0	8	2	4	+	0	0	2	8
J	1	0	1	2	╋	5	3	0	7
J	1	0	2	4		0	7	1	9
J	1	ž	$\overline{2}$	$\dot{7}$	┶	ž	́Л	$\hat{\boldsymbol{j}}$	ź
J	1 1	Δ	2 5	2	÷	J 1	т О	$\tilde{\Lambda}$	う
J T	1 1	4	しっ	5	+	1 つ	ファ	$\frac{1}{2}$	<u>ک</u>
J	1	0	3	U ¹	+	3	/	3	4
J	l	6	4	0	+	2	2	2	4
J	1	6	4	3	_	1	2	2	4
J	1	7	1	0	+	4	9	2	3
J	1	7	1	3	+	0	7	4	7
J	1	$\dot{7}$	Ż	8	÷	Ň	ż	ג	ż
J	1 1	$\dot{7}$	Δ	1	÷	1	2	5	J 1
J T	1 1	י ר	4	' I ' 1	Т	1 1	J 1	しっ	1
J	1	/	4	4	_	1	1	3	4
J	l	7	4	5	+	l	0	I	1
J	1	8	3	2		0	8	3	6
J	1	8	4	3		1	1	1	3
J	1	8	5	3.	+	1	3	0	3
I	1	8	5	7.	+ (0	9	4	3
J	1	ğ	ñ	, 2		ñ	2	$\dot{2}$	2 7
J	1 1	$\frac{1}{0}$	1	5	:	0 1	っ	2 5	ן ג
J T	1 1	フハ	1	1	+	1 1	<u> ~</u> っ	ر ۸	0 7
J	1	9	1	1	+	1	3	4	1
J	I	9	l	ŀ	_	l	I	I	4
J	1	9	1	8		0	6	4	2
J	1	9	2	3	+	2	5	1	5
J	1	9	4	4	+	0	9	0	7
I	1	9	4	6	÷	3	4	1	7
J	1	ó	5	5	+	\tilde{r}	à	ñ	Ŕ
J J	י ר	$\hat{\Lambda}$	J 1	$\hat{\mathbf{n}}$	1	∠ 1	ノ 2	$\frac{1}{2}$	2
J T	$\frac{2}{2}$	0	1	U 7		1	5 1		ว ว
J	2	0	1	/	+	U	0	U	5
J	2	0	1	9	+	2	4	2	5
J	2	0	2	2	+	2	5	3	4
J	2	0	3	3	╋	1	7	3	4
J	2	0	4	3	╋	1	7	1	1
J	2	1	4	5		0	7	5	0
J	$\tilde{2}$	1	5	0		ň	່າ	$\tilde{2}$	6
J T	$\frac{2}{2}$	ュ つ	J 1	л Л	1	2	ך ה	ራ	о Л
J	$\frac{2}{2}$	$\frac{2}{2}$	1	ተ ሰ	+	2	U C	U A	いっ
J	2	2	2	9	+	2	0	4	3
J	2	2	3	4	+	U	6	1	1
J	2	2	3	4	╋	0	9	4	4
J	2	3	0	2	+	4	4	4	2
J	2	3	1	7.	╋	1	4	3	9
J	2	ž	$\hat{2}$	2	+	$\hat{2}$	0	5	7
J	_	\mathcal{I}	_	_	1.	_	\mathcal{I}	\mathcal{I}	1

Sky Position

- 45 pulsars from EPTA/NANOGrav/PPTA/IPTA.
- Widely spreading over the sky, and good sampling in the parameter of the angular separation.

Observation and Data

- 50 of them are regularly monitored biweekly, less observations for other pulsars due to the limited observing time.
- Each observation lasts for 20 or 30 mins.
- Folding, polarization calibration (Xu J-W et al., in prep.) and RFI excision using DSPSR, PSRCHIVE, Tempo2, python.
- Sub-integrations are time-scrunched every 15 or 20 mins, or no longer than ~1/40 of the orbital period.
- The full 500-MHz band is splitted into 64 channels (except for J0218+4232 and J0636+5129).
- Subbands ToAs are generated with 1-D templates (Taylor 1992).

umber of epochs

Z

Р	DM	P_{b}	W ₅₀	<i>W</i> ₁₀		<i>S</i> ₁₄₀₀		Number	Span
(ms)	$(pc cm^{-3})$	(day)	(ms)	(ms)		(mJy)		of	(yr)
					16%	50%	84%	Epochs	
3.05	14.3	0.14	0.21	0.56	0.08	0.22	0.93	61	2.6
4.87	4.3	-	0.56	1.57	0.90	1.37	1.72	61	2.7
1.88	13.8	1.59	0.35	0.95	0.04	0.14	0.49	49	2.6
2.36	19.8	-	0.07	0.31	0.02	0.07	0.14	29	2.2
2.32	61.2	2.03	0.93	1.50	0.51	0.64	0.90	123	3.4
3.30	49.6	-	0.22	0.53	0.44	0.52	0.63	70	3.2
2.61	49.4	6.96	0.20	0.47	0.45	0.60	0.78	30	1.2
4.06	38.3	4.91	0.71	2.65	0.98	1.12	1.25	37	2.4
2.73	20.9	55.67	0.16	0.55	0.04	0.10	0.26	24	2.4
3.06	38.8	1.20	0.37	0.93	1.58	2.05	3.16	67	3.2
28.85	36.6	8.32	0.58	5.10	1.17	1.50	2.23	69	3.2
2.87	11.1	0.07	0.14	0.31	0.22	0.54	1.31	71	3.2
8.85	18.3	-	0.13	0.53	0.05	0.17	0.52	69	3.2
4.09	44.7	30.23	0.98	2.08	0.25	1.10	2.63	23	2.4
3.48	30.2	0.26	0.24	0.84	0.89	1.28	1.82	70	3.3
9.86	34.6	23.21	0.29	3.16	0.49	0.79	0.95	23	2.4
	P (ms) 3.05 4.87 1.88 2.36 2.32 3.30 2.61 4.06 2.73 3.06 28.85 2.87 8.85 2.87 8.85 4.09 3.48 9.86	PDM (ms) 3.05 14.3 4.87 4.3 1.88 13.8 2.36 19.8 2.32 61.2 3.30 49.6 2.61 49.4 4.06 38.3 2.73 20.9 3.06 38.8 28.85 36.6 2.87 11.1 8.85 18.3 4.09 44.7 3.48 30.2 9.86 34.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					

Timing Model

- motions in RA DEC, and parallax) are fitted.
- Two spin parameters (except for J1024-0719).
- DM + DM1 + DM2 + (DM noise).
- Binary models: DD, ELL1, DDH, ELL1H (DDK for J1713+0747)
 - Keplerian parameters
 - Post-keplerian parameters, depends on the binary systems

For all pulsars, five astrometric parameters in ecliptic coordinate (RA,DEC, proper

Frequency dependent parameters (Arzoumanian et al., 2015), up to 1 for each pulsar.

Single Pulsar Noise Modeling

- White noise + DM noise + Red Noise.
- White noise: Efac, Equad, Ecorr:

DM noise and Red noise are characterized with a power-law spectrum:

 $P\left(f\right) = A^2 \left(\frac{f}{f}\right)$

- Noise analysis using TEMPONEST(Lentati et al., 2014).
- Best model: Equad? + Ecorr? + DM noise? + Red noise?

Pulsar name	Number	r of Fit P	arameters		Best Noise model				Subband RMS (μ s)		Band-averaged RMS (μ s)	
J2000	Astrometry	Spin	Binary	FD	EQUAD	ECORR	DM Noise	Red Noise	Full	Whitened	Full	Whitened
J0023+0923	5	2	9	1		\checkmark	\checkmark	\checkmark	0.916	0.884	0.325	0.191
J0030+0451	5	2	0	0		\checkmark	\checkmark	\checkmark	0.514	0.506	0.135	0.096
J0034-0534	5	2	5	1			\checkmark	\checkmark	1.846	1.711	0.733	0.240
J0154+1833	5	2	0	0		\checkmark		\checkmark	0.750	0.618	0.426	0.032
J0218+4232	5	2	7	0			\checkmark	\checkmark	0.716	0.607	0.422	0.182
J0340+4130	5	2	0	1	\checkmark		\checkmark	·	0.974		0.095	
J0406+3039	5	2	5	1	\checkmark		\checkmark		0.769		0.038	
J0509+0856	5	2	5	0					1.298		0.171	

$\mathbf{C}_{W,ij} = (\mathbf{E}_{f}^{2} \sigma_{i}^{2} + \mathbf{E}_{g}^{2}) \delta_{ij} + \mathbf{E}_{c}^{2} \mathbf{C}_{\mathbf{E}_{c},ij}$

Single Pulsar Noise Modeling

42, 42++ (Chen et al., in preparation).

Timing Residuals

Astrometry: CPTA vs VLBI

- For most pulsars, the astrometric results from CPTA timing are consistent with VLBI (except for PSRs J1024-0719, J1910+1256).
- The position of J1024-0719 from CPTA is different from VLBI, (IPTA DR2 also differs), the proper motions are not consistent (see next slide)
- Ding et al., (2023) also notice the discrepancy between timing and VLBI for J1910+1256.
- JO JO J1 **J**1 J1 **J**1 J1 J1 J1 J1 **J**1 **J**1 J20 J2

Pulsar name J2000	Epoch MJD	Method	α	δ	μ_{α} (mas yr ⁻¹)	μ_{δ} (mas yr ⁻¹)	Parallax (mas)	Refer
J0030+0451	57849	VLBI Timing	00:30:27.42502(6) 00:30:27.4252(1)	+04:51:39.7159(2) +04:51:39.707(5)	-6.13(7) -6.9(5)	$0.34_{-0.16}^{+0.15}$ 2(1)	3.02(7) 3.09(7)	Ding CPTA
J0621+1002	57685	VLBI Timing	06:21:22.11617(12) 06:21:22.1161(1)	+10:02:38.7261(3) +10:02:38.722(6)	3.5(2) 3.2(3)	-1.37(35) -0(1)	0.86(15) 1(1)	Ding CPTA
J1012+5307	57700	VLBI Timing	10:12:33.43991(4) 10:12:33.43983(6)	+53:07:02.1110(1) +53:07:02.1128(6)	2.67(5) 2.4(1)	$-25.39^{+0.14}_{-0.15}$ -25.7(1)	$1.17_{-0.05}^{0.04}$ 1.41(27)	Ding CPTA
J1024-0719	57797	VLBI Timing	10:24:38.65725(6) 10:24:38.657196(9)	-07:19:19.8014(2) -07:19:19.8049(3)	-35.32(7) -35.11(3)	-48.1(2) -47.83(7)	0.94(6) 0.97(5)	Ding CPTA
J1640+2224	57500	VLBI Timing	16:40:16.74587(7) 16:40:16.74595(2)	+22:24:08.7642(1) +22:24:08.7643(6)	2.19(9) 1.94(4)	$-11.30^{+0.16}_{-0.13}$ -11.46(11)	0.68(8) 7(5)	Ding CPTA
J1643-1224	57700	VLBI Timing	16:43:38.16407(10) 16:43:38.1645(2)	-12:24:58.6531(4) -12:24:58.651(14)	6.2(2) 6.1(7)	3.3(6) 4(3)	$1.31^{+0.17}_{-0.18}$ 0(1)	Ding CPTA
J1713+0747	52275	VLBI Timing	17:13:49.5306(1) 17:13:49.5307(1)	+07:47:37.519(2) +07:47:37.522(2)	4.75 ^{+0.17} -0.07 4.96(8)	-3.67(16) -3.91(8)	0.95(6) 0.91(8)	Chatt CPT
J1738+0333	57829	VLBI Timing	17:38:53.97001(6) 17:38:53.97006(1)	+03:33:10.9124(1) +03:33:10.9118(4)	6.98(8) 7.14(4)	5.18(16) 5.01(11)	0.50(6) 0.72(16)	Ding CPT/
J1853+1303	57846	VLBI Timing	18:53:57.31785(6) 18:53:57.31794(1)	+13:03:44.0471(1) +13:03:44.0463(3)	-1.4(1) -1.62(3)	-2.8(2) -2.87(6)	0.49(7) 0.66(8)	Ding CPTA
J1910+1256	57847	VLBI Timing	19:10:09.70165(3) 19:10:09.701606(8)	+12:56:25.43160(6) +12:56:25.4317(3)	0.50(4) 0.22(3)	-6.85(9) -7.17(7)	0.254(35) 0.55(11)	Ding CPTA
J1911-1114	57768	VLBI Timing	19:11:49.27544(10) 19:11:49.27531(3)	-11:14:22.5547(3) -11:14:22.554(2)	-13.8(2) -13.6(1)	-10.3(4) -9.9(5)	$\begin{array}{c} 0.38^{+0.13}_{-0.14} \\ 0.29(18) \end{array}$	Ding CPTA
J1918-0642	57768	VLBI Timing	19:18:48.02959(10) 19:18:48.02948(2)	-06:42:34.9335(2) -06:42:34.9345(9)	-7.1(1) -7.03(7)	-5.7(3) -6.06(21)	0.60(12) 0.71(10)	Ding CPTA
J2010-1323	56000	VLBI Timing	20:10:45.9211(1) 20:10:45.92108(9)	-13:23:56.083(4) -13:23:56.082(5)	2.358 ^{+0.329} -0.210 2.6(1)	$-5.611^{+0.257}_{-0.303}$ -5.9(5)	$\begin{array}{c} 0.484\substack{+0.166\\-0.120}\\ 0.38(12)\end{array}$	Delle CPTA
J2145-0750	56000	VLBI Timing	21:45:50.4588(1) 21:45:50.4589(1)	-07:50:18.513(2) -07:50:18.516(4)	-9.46(5) -9.6(2)	-9.08(6) -8.9(5)	1.63(4) 1.85(11)	Delle CPTA
J2317+1439	56000	VLBI Timing	23:17:09.2364(1) 23:17:09.23632(4)	+14:39:31.265(1) +14:39:31.266(1)	$-1.476^{+0.465}_{-0.065}$ -1.18(6)	$3.806^{+0.272}_{-0.704}$ $3.32(11)$	$\begin{array}{c} 0.6^{+1.533}_{-0.241} \\ 0.60(9) \end{array}$	Delle CPT/

rence

Proper Motion

- PM results from CPTA DR1 and other PTAs are very consistent, excepts for J1024-0719 and 3o deviations for several pulsars.
- Further half-year data of J1024-0719 fix the discrepancy.
- Possible reasons: long orbital period and short data length, and the coverage of the data point is not good enough.

Parallax

- Significant parallax measurements in 34 out of 57 pulsars.
- First parallax measurements for 8 pulsars, PSRs J0509+0856, J1911+1347, J1944+0907, J2017+0603, J2019+2425, J2033+1734, J2229+2643 and J2302+4442.
- 15 measurements are improvements on previous results.
- PSR J1012+5307, our value differs from EPTA DR1 for 2.2σ.
- PSR J2145-0750, our result differ from NANOGrav12.5 for 2.8 σ , PPTA DR2 for 3.5 σ and VLBI for 2.1 σ .
- Probably due to difference in red noise modeling and DM variation modeling.

EPTA DR1 NANOGrav 12.5 yr PPTA DR2

J0023+0923 J0030+0451 J0613-0200 -J0636+5129 J0645+5158 · J0751+1807 · J1012+5307 J1024-0719 -J1713+0747 · J1738+0333 J1741+1351 J1744–1134 · J1832-0836 -J1843-1113 J1853+1303 -J1857+0943 J1910+1256 -J1918-0642 · J2010-1323 J2043+1711 J2145-0750 -J2214+3000 -J2234+0611 J2234+0944 J2317+1439 -J2322+2057

Post-Keplerian Parameters

- Measuring the secular variations terms strongly depends on the data span.
- We Measured PK parameters in 24 among the 40 binaries.
- PBDOT not measurable in the 2-3 years dataset except for high order of derivatives in these black widow pulsars.

TABLE II. Dependence of fractional parameter uncertainties on T^a and $(P_b)^b$, computed by numerical simulations and by analytical approximations.

	a		Ь	
Param- eter	Numerical	Analytical	Numerical	Analytical
ŵ	-1.3	-3/2	1.1	1
γ	-1.5	-3/2	1.4	4/3
\dot{P}_b	-2.3	-5/2	3.0	3
r	-0.5	-1/2	0.0	0
S	-0.5	-1/2	0.0	0
δ_{θ}	-2.3	-5/2	3.2	10/3

J1713+0747

J1741+1351

OMDOT and XDOT

- The omdot measurements are comparable for less precise with previous works.
- xdot mainly contributed by the proper motion of the system, and can be used to constrain the inclination angle of binary systems.

 $i < \arctan \frac{x\mu}{x}$

• The upper limits of orbital inclination angle i at 95% confidence interval are I<57.5 deg, I<53.1 deg, I<74.3 deg, I<42.6 deg and I<67.0 deg for PSRs J1853+1303, J1910+1256, J2019+2425, J2229+2643 and J2234+0611 respectively.

Shapiro Delays

- harmonic signal in 3 binary systems.
- For six pulsars among the 19 binaries (PSRs J0218+4232, J1630+3734, J1910+1256, J2019+2425, J2150-0326 and J2234+0611), the detections are for the first time.
- Most of these measurements are consistent with other PTAs or former other results.
- The only exception is J2302+4442, CPTA DR1 results do no agree with NG12.5yr results: CPTA DR1 gives a pulsar mass of 1.46±0.16 solar mass; where NG12.5yr results indicate $Mp=0.45\pm0.12$ solar mass.

J0613-0200 J0751+1807 J1640+2224 J1713+0747 J1741+1351 J1853+1303 J1857+0943 J1903+0327 J1918-0642 J1946+3417 J2017+060 J2043+1711 J2145-0750 · J2302+4442 -J2317+1439

Summary

- CPTA DR1 contains 57 MSPs, data length is about 2.5 years.
- Noise analyses using different pipelines give consistent results.
- We got very high timing precision data.
- Parallax measured in 34 out of the total 57 pulsars.
- measurements of Shapiro delays.
- (PTAs and VLBI).

Post-Keplerian parameters measured in 24 binary systems, including several first

Results pulsar parameters from CPTA DR1 are broadly consistent with previous works

