Ref: Y. Dong, Z. Hu, R. Xu and L. Shao, PRD 108,104039 (2023)

Moment of inertia for axisymmetric neutron stars in the standard model extension

Yiming Dong (Peking University) ydong@pku.edu.cn

Supervisor: Lijing Shao

- **• Moments of inertia (MOI) of neutron star (NS)**
	- Build relations between **angular momentum** and **angular velocity**

1

Credited: ScienceNews

- **• Moments of inertia (MOI) of neutron star (NS)**
	- Build relations between **angular momentum** and **angular velocity**
- **• For Theories**
	- **• Structure of NS:** MOI differs under different equation of state (EOS)
	- **• Universal relations (I-Love-Q)**: Insensitivity to EOS to help us learn gravity

J. B. Hartle, 1967, ApJ J. B. Hartle & K. S. Thorne, 1968 ApJ Credited: K. Yagi & N. Yunes, 2013, PRD

1

- **• For observations**
	- **• High precision pulsar timing: direct detection** of MOI from Lense-Thirring effect in pulsar timing H. Hu et al., 2020, MNRAS

Credited: M. Kramer et al., 2022, PRX

- **• For observations**
	- **• High precision pulsar timing: direct detection** of MOI from Lense-Thirring effect in pulsar timing H. Hu et al., 2020, MNRAS
	- **• Glitch**: timing irregularities in pulsar timing observation
		- **•** Changes in MOI will result in variations in angular velocity

Credited: C. M. Espinoza et al., 2010, MNRAS

N. Andersson et al., 2003, PRL X. Y. Lai et al., 2023, MNRAS

2

Calculation of moment of inertia

- **• Moments of inertia of spherically symmetric neutron stars in GR**
	- Solve the perturbed **Einstein's field equation**
	- For same density distribution, Newton or GR give **different results**

J. B. Hartle, 1967, ApJ J. B. Hartle & K. S. Thorne, 1968 ApJ

Calculation of moment of inertia

- **• Moments of inertia of spherically symmetric neutron stars in GR**
	- Solve the perturbed **Einstein's field equation**
	- For same density distribution, Newton or GR give **different results**

J. B. Hartle, 1967, ApJ J. B. Hartle & K. S. Thorne, 1968 ApJ

A consistent approach to calculate

MOI of axisymmetric NS numerically

Standard-Model Extension (SME)

• Effective field theory that involve operators for Lorentz violation

• The neutron stars have a preferred direction

 $\frac{1}{16\pi G} \left(-uR + s^{\mu\nu}R_{\mu\nu}^T + t^{\alpha\beta\gamma\delta}C_{\alpha\beta\gamma\delta} \right)$

$$
\mathscr{L}_{LV}^{(4)} = \frac{1}{16\pi G} \left(-\right.
$$

Q. G. Bailey & V. A. Kostelecky , 2006, PRD

Credited: R. Xu et al., 2020, PLB

Calculations

MOI for spherical NSs in GR

Results

MOI for axisymmetric NSs in SME

Moment of inertia in GR

• Stationary and axially symmetric metric,

 $ds^2 = -H^2dt^2 + Q^2dr^2 + r^2K^2 \left[d\theta^2 + \sin^2\theta(d\varphi - Ldt)^2\right]$

• Field equation,

4-velocity Slowly rotation, $u^r = u^\theta = 0$, $u^\varphi = \Omega u^t$ $L(r, \theta) = \omega(r, \theta) + \mathcal{O}(\Omega^3)$

$$
R^t_\rho=8\pi T^t_\rho
$$

 \rfloor

J. B. Hartle, 1967, ApJ J. B. Hartle & K. S. Thorne, 1968 ApJ

Moment of inertia in GR

• Stationary and axially symmetric metric,

• Field equation,

• Further (partial differential equation, PDE),

$$
ds^2 = -H^2dt^2 + Q^2dr^2 + r^2K^2\left[d\theta^2 + \sin^2\theta(d\varphi - Ldt)^2\right]
$$

4-velocity Slowly rotation, Frame dragging, $u^r = u^\theta = 0$, $u^\varphi = \Omega u^t$ $L(r, \theta) = \omega(r, \theta) + \mathcal{O}(\Omega^3)$ $\bar{\omega} = \Omega - \omega(r, \theta)$

 ∂ $\frac{\partial}{\partial \theta}$ (sin³ θ ∂*ω*¯ $\left(\frac{\partial}{\partial \theta}\right) = 0$

 \rfloor

$$
R^t_\varphi=8\pi T^t_\varphi
$$

$$
\frac{1}{r^4}\frac{\partial}{\partial r}\left(r^4j\frac{\partial\bar{\omega}}{\partial r}\right) + \frac{4}{r}\frac{dj}{dr}\bar{\omega} + \frac{e^{(\lambda-\nu)/2}}{r^2}\frac{1}{\sin^3\theta}\frac{\partial}{\partial r}
$$

J. B. Hartle, 1967, ApJ J. B. Hartle & K. S. Thorne, 1968 ApJ

Moment of inertia in GR

• Stationary and axially symmetric metric,

• Field equation,

• Further (partial differential equation, PDE),

$$
ds^2 = -H^2dt^2 + Q^2dr^2 + r^2K^2\left[d\theta^2 + \sin^2\theta(d\varphi - Ldt)^2\right]
$$

$$
R^t_\varphi=8\pi T^t_\varphi
$$

$$
\frac{1}{r^4} \frac{\partial}{\partial r} \left(r^4 j \frac{\partial \bar{\omega}}{\partial r} \right) + \frac{4}{r} \frac{dj}{dr} \bar{\omega} + \frac{e^{(\lambda - \nu)/2}}{r^2} \frac{1}{\sin^3 \theta} \frac{\partial}{\partial \theta} \left(\sin^3 \theta \right)
$$

• For spherical NS in GR,

 \rfloor ∂*ω*¯ $\left(\frac{\partial}{\partial \theta}\right) = 0$ 4-velocity Slowly rotation, Frame dragging, Spherical NS in GR, $u^r = u^\theta = 0$, $u^\varphi = \Omega u^t$ $L(r, \theta) = \omega(r, \theta) + \mathcal{O}(\Omega^3)$ $\bar{\omega} = \Omega - \omega(r, \theta)$ $\bar{\omega}(r) = \Omega - \frac{2J}{r^2}$ *r*3 *I* = *J*/Ω

$$
\frac{1}{r^4}\frac{d}{dr}\left(r^4j\frac{d\bar{\omega}}{dr}\right) + \frac{4}{r}\frac{dj}{dr}\bar{\omega} = 0
$$

J. B. Hartle, 1967, ApJ J. B. Hartle & K. S. Thorne, 1968 ApJ

5

Moment of inertia in SME

- We still want to calculation this field equation, but there's some difference
	- **• Difference 1: field equation has another term**
		- We should solve $R^t_\varphi = 8\pi T^t_\varphi V^t_\varphi$, where $V^\mu_\nu = \bar{s}^{\alpha\beta} g^{\mu\delta}$

QCCCBailey et al., 2014, PRD

R. Xu et al., 2020, PLB

Moment of inertia in SME

- We still want to calculation this field equation, but there's some difference
	- **• Difference 1: field equation has another term**
		- We should solve $R^t_\varphi = 8\pi T^t_\varphi V^t_\varphi$, where $V^\mu_\nu = \bar{s}^{\alpha\beta} g^{\mu\delta} G_{\delta\alpha\beta\nu}$
	- **• Difference 2: axisymmetric deformation of neutron stars**

$$
\int \rho^{(1)}(r,\theta) = -\frac{1}{6}\bar{s}^{zz}(3\cos^2\theta - 1)r\rho^{(0)}(r)_{,r}
$$

$$
P^{(1)}(r,\theta) = -\frac{1}{6} \bar{s}^{zz} (3 \cos^2 \theta - 1) r P^{(0)}(r)_{,r}
$$

Q. G. Bailey et al., 2014, PRD

R. Xu et al., 2020, PLB

Moment of inertia in SME

- We still want to calculation this field equation, but there's some difference
	- **• Difference 1: field equation has another term**
		- We should solve $R^t_\varphi = 8\pi T^t_\varphi V^t_\varphi$, where $V^\mu_\nu = \bar{s}^{\alpha\beta} g^{\mu\delta} G_{\delta\alpha\beta\nu}$
	- **• Difference 2: axisymmetric deformation of neutron stars**

$$
\int \rho^{(1)}(r,\theta) = -\frac{1}{6} \bar{s}^{zz} (3 \cos^2 \theta - 1) r \rho^{(0)}(r)_{,r}
$$

$$
\bullet \ P^{(1)}(r,\theta) = -\frac{1}{6} \bar{s}^{zz} (3 \cos^2 \theta - 1) r P^{(0)}(r)_{,r}
$$

Q. G. Bailey et al., 2014, PRD

R. Xu et al., 2020, PLB

$$
\frac{1}{r^4} \frac{\partial}{\partial r} \left(r^4 j \frac{\partial \bar{\omega}}{\partial r} \right) + \frac{4}{r} \frac{dj}{dr} \bar{\omega} + \frac{e^{(\lambda - \nu)/2}}{r^2} \frac{1}{\sin^3 \theta} \frac{\partial}{\partial \theta} \left(\sin^3 \theta \frac{\partial \bar{\omega}}{\partial \theta} \right) = S'_1(r, \theta) + S'_2(r, \theta)
$$

- **•** Far field behaviors of *ω*¯
- **•** Solve PDE for *r* ∈ (0,∞)
- **• Finite element method**
	- Numerically, integrating r to infinity is impossible

• Change of variables $(r, \theta) \rightarrow \left(x \equiv$ $r\cos\theta$

• How to get MOI?

Solve PDE numerically 1 ∂ ∂*ω*¯ 4 d*j*

• Improve accuracy greatly

*r*4

 $\frac{\partial}{\partial r}$ (*r*⁴*j*

[∂]*^r*) ⁺

r

d*r*

 $\bar{\omega}$ +

$$
\frac{e^{(\lambda-\nu)/2}}{r^2} \frac{1}{\sin^3\theta} \frac{\partial}{\partial\theta} \left(\sin^3\theta \frac{\partial\bar{\omega}}{\partial\theta}\right) = S'_1(r,\theta) + S'_2(r,\theta)
$$

Solve PDE numerically

- **• Process of numerical solving**
	- Derive the modified PDE of MOI
	- **•** Change of variables

$$
(r, \theta) \to \left(x \equiv \frac{r \cos \theta}{r + R}, y \equiv \frac{r \sin \theta}{r + R}\right)
$$

- Solve (x, y) PDE to get numerical solution
- **•** Fitting with polynomial to get MOI with far field behaviors of $\bar{\omega}$

$$
\bar{\omega}(r,\theta) = A + \frac{B(\theta)}{r^3} + \frac{C(\theta)}{r^4} + \dots
$$

Results

- **•** Corrections to MOIs **caused by axisymmetric deformations**
	- $k = \delta I_1/I$, for chosen deformations it is 1/3
	- For deformation caused by Lorentz violation,
		- **Ratio** $k = \delta I_1/I$ from GR differs from **Newtonian one**
		- For a neutron star with $1.4 M_{\odot}$, it is 8%

Summary

- We develop a **consistent approach** to calculate moment of inertia for **axisymmetric** neutron stars in the Standard-Model Extension
	- **• Finite element method**
	- **Ratio** $k = \delta I_1/I$ from GR differs from Newtonian **one**
		- For a neutron star with $1.4 M_{\odot}$, it is 8%

