High-Energy Cosmic Rays and Neutrinos from Cluster Accretion Shocks

Ke Fang JSI fellow @ University of Maryland & NASA Goddard Space Fight Center

Sep 27, 2015

KIAA Workshop

Victor Hess ballon flights 1912 establishes the cosmic nature of ionizing radiation

103th Anniversary in 2015

Victor Hess ballon flights 1912 establishes the cosmic nature of ionizing radiation GNNP 23

103th Anniversary in 2015

A Simple Scale-Up?

Clusters as Sources of UHECRs

Cosmic Ray Acceleration

Diffusive Shock Acceleration

dE

$$\begin{aligned} r_{\rm sh} \sim r_{\rm vir} &= 3 {\rm Mpc} \, \left(\frac{M}{10^{15} M_{\odot}} \right)^{1/3} \, \text{-Cluster mass} \\ v_{\rm sh} &= \sqrt{\frac{GM}{r_{\rm sh}}} = 1300 \, M_{15}^{1/3} \, {\rm km \, s^{-1}} \, \text{Magnetic Field} \\ t_{\rm acc} \sim 20 D_{\rm sh} / v_{\rm sh}^2 = 1.3 \, E_{18} \, M_{15}^{-2/3} \, B_{-6}^{-1} Z^{-1} \, {\rm Gyr} \\ E_{\rm max} &= 3 \times 10^{18} \, M_{15}^{2/3} \, Z \, B_{-6} \, {\rm eV} \end{aligned}$$

Energy Budget

$$\langle \dot{M} \rangle = 42 M_{12}^{1.127} (1 + 1.17z) E(z) M_{\odot} \text{ yr}^{-1}$$

 $L_{\text{CR}} = f_b f_{\text{CR}} \frac{GM\dot{M}}{r_{\text{sh}}} = 2 \times 10^{45} M_{15}^{2.05} f_{\text{CR},-1} \text{ erg s}^{-1}$
Cosmic ray injection spectrum channel fraction
 $\frac{dN_{\text{CR}}}{M_{\text{CR}}} \propto E^{-\alpha} \qquad \alpha \sim 2 - 2.5$

Keshet, Waxman, Loeb+ 2003 Inoue & Aharonian 2005 Murase, Inoue & Nagataki 2008 Kotera, Allard, Murase+ 2009

Cosmic Ray Diffusion in Cluster B Fields

Particle Larmor Radius $r_L = 1 E_{18} B_{-6}^{-1} Z^{-1} \text{ kpc}$ $l_0 \sim 0.1 \text{ Mpc}$

Coherence Length of B fields in massive cluster

Turbulent Magnetic Field in Massive Clusters

Cavaliere & Fusco-Ferniano, A&A 49, 137 (1976)

$$n_{\rm ICM}(r) = n_{\rm ICM,0} \left[1 + \left(\frac{r}{r_c} \right)^2 \right]^{-3\beta/2}$$

$$B(M,r) = B_0 \left(\frac{M}{M_0} \right)^{\lambda} \left[1 + \left(\frac{r}{r_c} \right)^2 \right]^{-3\beta\eta/2}$$

$$B(r) = \max \left(B_1 e^{-r/R_1}, B_2 e^{-r/R_2} \right)$$

$$B(r) = \max \left(B_1 e^{-r/R_1}, B_2 e^{-r/R_2} \right)$$

Interaction with ICM Baryons

$$p + p \to p + \pi^{\pm} + \dots$$

$$\pi^{\pm} \to e^{\pm} + \nu_{\mu} + \bar{\nu}_{\mu} + \nu_e(\bar{\nu}_e)$$

$$\tau = n_{\rm ICM} \sigma_{\rm pp} \kappa_{\rm pp} \frac{c t_{\rm diff}}{R} = 10^{-3} \frac{n_{\rm ICM}}{10^{-3} \,\mathrm{cm}^{-3}} \frac{R}{3 \,\mathrm{Mpc}} \frac{c t_{\rm diff}}{R}$$

ICM density profile, turbulent IGMF structure ===> Simulation

Particle Trajectory - 10 EeV

Cosmic Ray Flux from Single Cluster

 $B_c = 40 \,\mu G, M = 10^{15} \,M_{\odot}$

Neutrino Flux from Single Cluster

$$B_c = 40 \,\mu G, M = 10^{15} \, M_{\odot}$$

Cluster Mass Function

Tinker et al 2008

The Integrated Cosmic Ray Flux from Clusters

Case A - s = 2.5, frac = 0.1 Case B - s = 2.2, frac = 0.05

The Integrated Neutrino Flux from Clusters

Case A - s = 2.5, frac = 0.1 Case B - s = 2.2, frac = 0.05

Consistency with Gamma-ray Limits

EBL attenuation will limit the gamma-ray production!

Conclusions

Cluster accretion shocks could significantly contribution to both high-energy cosmic rays around the ankle and TeV-PeV neutrinos detected by the IceCube Observatory.

Backup Slides

Particle Trajectory - 1 PeV

Kotera & Lemoine 0706.1891