Dark matter direct detection

João de Mello Neto Federal University of Rio de Janeiro

KIAA Workshop on Astroparticle Physics Beijing, 28-29 September 2015

Nature of dark matter ?

From **astrophysics** and searchs for **new particles**:

- no strong self-interaction
- no colour charge
- no electric charge
- Stable or long lived

The cross-sections and masses of candidates span many orders of magnitude!

This talk: two classes of well motivated candidates: •WIMPs •Axions

Baer et al. ArXiv 1407.0017

Direct detection of WIMPs

Search for **elastic collisions** of the WIMP with atomic **nucleus** in a low background detector

$$\frac{dR}{dE_R} = N_T \frac{\rho_{DM}}{m_W}$$

$$d\vec{v}f(\vec{v})v\frac{d\sigma}{dE_R}$$

 N_T number of target nuclei ρ_{DM} DM density (gal. halo) $d\sigma/dE_R$ WIMP-nucleus diff. cross section f(v) WIMP vel. distribution function in Earth frame

$$E_R = \frac{m_r^2 v^2}{m_N} (1 - \cos \theta)$$

$$v_{min} = \left(\frac{m_N E_{th}}{2m_r^2}\right)^{\frac{1}{2}}$$

 $\begin{array}{l} \theta \text{ scattering angle in CM} \\ m_N \text{ nuclear mass} \\ m_r \text{ reduced mass} \end{array}$

 E_{th} energy threshold in the detector

Simplest galactic model: Maxwell-Boltzmann distribution for the WIMP in the gal. rest frame, dispersion ≈ 220 km.s⁻¹, v_{esc} ≈ 544 km.s⁻¹

Diff. cross section split in leading components F_{SI} nuclear form factor

$$\frac{d\sigma}{dE_R} \propto \sigma_{SI}^0 F_{SI}^2(E_R) + \sigma_{SD}^0 F_{SD}^2(E_R)$$

|

1

Differential rate x nuclear recoil

Deposited energy from **0.1 to 100 keV** (measured by ionization, phonon or scintillation signals)

Lower **threshold**, larger sensitivity: spectrum rises exponentially towards low energy Most evident for **heavy target** isotopes, more important for **low mass WIMPS**

Snowmass CF1 Arxiv 1310.8327

Backgrounds

- Cosmic rays and their secondaries
- Cosmic activation of detector materials at Earth's surface
- Natural radioactivity: ²³⁸U, ²³²Th, ²²²Rn, ⁴⁰K
- Antropogenic sources: ⁸⁵Kr, ¹³⁷Cs

Ultimate background: **neutrinos**

Ex: Xenon liquid detector Summed differential spectrum for pp and ⁷Be double beta decay of ¹³⁶Xe

WIMP 40 GeV, $2x10^{-48}$ cm²

WIMP 100 GeV, 2x10⁻⁴⁷ cm²

Baudis et al. ArXiv 1309.7024

WIMP modulation

Earth's orbit around the sun:

- the relative velocity between DM particles in galactic halo and detectors varies over the year
- approximately sinusoidal modulation for the recoil rate of DM at keV energies
- peaks in early June

Underground labs

Dark Matter experiments

Dark Matter experiments

WIMP spin independent measurements

DAMA/LIBRA modulation signal

2-4 keV

- Array of **Nal** (sodium iodide) **crystals** in 1995
- Operating the current DAMA/LIBRA setup of 250 kg of Nal since 2003.
- Observed an **annual modulation** in their data (9σ significance) with a **phase consistent** with that expected from galactic dark matter interactions.
- If signal is interpreted as evidence of scattering of WIMP dark matter: strong tension with results from many other searches.
- No successful experimental or theoretical explanation for the annual modulation signal.

Xenon100

XENON10 2005 - 2007 15 cm 25 kg > 8.8 x 10⁻⁴⁴ cm²

XENON100 2008 -30 cm 161 kg > 2 x 10⁻⁴⁵ cm²

XENON1T	XENONnT
2015 –	2018 –
100 cm	130 cm
3300 kg	7000 kg
~2 x 10 ⁻⁴⁷ cm ²	~2 x 10 ⁻⁴⁸ cm ²

Two-phase time projection chamber

- Interactions in LXe: prompt scintillation light (SI) and ionization electrons
- Electrons drift in applied electric field until liquid/gas interface
- Extracted into the GXe by a much stronger field: generate secondary amplified scintilation signal (S2)
- The time difference between S1 and S2: height of the vertical event position

XENON100, Astrop. Part. 2011

Hamamatsu R8520 PMTs

Top of the TPC:

arranged in concentric circles to improve the reconstruction of the radial event position

Bottom of the TPC:

arranged as closely as possible in order to achieve high light collection (low threshold detector)

position reconstruction based on S2 hit pattern: $\Delta r < 3mm$, $\Delta z < 2mm$

XENON100, Astrop. Part. 2011

Spatial events distribution in TPC

single scattering events, 225 live days, 2011/2012

powerful background suppression

- fiducialization
- event multiplicity

black dots: events below 97.5% rejection cut

low background experiment: $\sim 5 \times 10^{-3} \text{ evts/kg/keV/day}$ after veto cut and before S2/S1 discrimination

WIMP landscape and prospects

Arkerib, TAUP2015

Exclusion of Leptophilic Dark Matter Models

Search interaction DM - electrons. This interaction could reconcile DAMA and null results from nuclear recoils

Electron recoil events selected around expected peak of modulation (70 days around Jun, 2nd.)

For 3 models of WIMP coupling to e⁻ expected signal and exclusion curves were calculated.

DAMA signal excluded as being induced by WIMPS interacting with e⁻ according to

- Axial vector coupling 4.4 σ
- Mirror DM at 3.6 σ
- Luminous DM at 4.6 σ

"Anomalies"

DAMA/LIBRA: 9.2 σ excess in 2-6 keV, 1.33 ton-yr NaI data set, with modulation

COGENT: excess in 0.5-3 keVee in 145 kg-day data set with Ge detector

SuperCDMS: CDMS Si reported excess, SuperCDMS Ge excludes it in 577 kg-day, I.6 keVr threshold run This analysis strongly disfavors a WIMP-nucleon scattering interpretation of the excess reported by CoGeNT, which also uses a germanium target.

CRESST-II: excess reported in phase-1, phase-2 excludes it 29.4 kg-day, 0.6 keV threshold run

DArk matter Wimp search with Noble liquids DARWIN

- Ultimate, multi-ton (~50 tons!) dark matter detector at LNGS.
- Primary goal: to probe the spin-independent WIMP-nucleon cross section down to the 10^{-49} cm² region for ~50 GeV WIMPs.
- Explore the experimentally accessible parameter space, finally limited by irreducible neutrino backgrounds.
- WIMPs discovered DARWIN:
 - measure WIMP-induced nuclear recoil spectra with highstatistics
 - constrain the mass and the scattering cross section
- First real-time detection of solar pp-neutrinos (high stats)
- Search for the neutrinoless double beta decay (neutrino is its own anti-particle?)
 - ▶ ¹³⁶Xe has a natural abundance of 8.9% in xenon.
- 99.98% discrimination, 30% NR acceptance,
- LY = 8 pe/keV at 122 keV

arXiv:1506.08309

DAMIC - <u>Dark Matter In C</u>CDs

CCDs as WIMP detectors

Chavarria, Tiffenberg for Damic Collab., Phys. Procedia, 2014

CCD performance

Histogram of all the pixel values in an image after the **median pixel** value over many images has been **subtracted**.

Blank exposure: zero-length exposures read out right after every data exposure, with true readout noise patterns but no physical tracks.

DAMIC at **SNOLAB**

β - β coincidences

- ★ Ultimate sensitivity of the experiment: rate of the radioactive background that mimics the nuclear recoil signal from the WIMPs
- ★ The measurement of the intrinsic contamination of the detector is fundamental
- ★ For silicon-based experiments the cosmogenic isotope ³²Si is particularly relevant, its decay spectrum extends to the lowest energies and may become an irreducible background

$$\begin{array}{cccc} ^{210}\mathrm{Pb} & \xrightarrow{\beta^{-}} ^{210}\mathrm{Bi} & \xrightarrow{\beta^{-}} ^{210}\mathrm{Po} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

β - β coincidences

We have performed a search for ³²Si and ²¹⁰Pb in 57 days of data

- \star Efficiency and acidental pairs: detailed Monte Carlo simulations
- ★ ³²Si decay rate was estimated to be $\frac{80^{+110}_{-65} \text{ kg}^{-1} \text{ d}^{-1}}{100}$ (95% CL)
- \star Similar procedure: upper limit on the ²¹⁰Pb decay rate

$$\frac{33 \,\mathrm{kg}^{-1} \mathrm{d}^{-1}}{(95\% \,\mathrm{CL})}_{27}$$

α particles

Dark Matter search analysis

★ Fit 2D Gaussian in a moving 7x7 pixel window (baseline + peak)
 ★ Get LL of of best fit
 ★ Compare to fit to constant pixel values (null hypothesis)
 ★ Calculate ΔLL = LL_{BF} - LL_{const-pix}
 ★ Good candidates: large negative values of ΔLL

Dark Matter search analysis

Dark Matter signal model; Lindhard ionization efficiency: k=0.15 $v_0 = 220 \text{ km s}^{-1}$ $v_{Earth} = 232 \text{ km s}^{-1}$ $v_{esc} = 544 \text{ km s}^{-1}$ $\rho = 0.3 \text{ GeV c}^{-2} \text{ cm}^{-3}$ Data used:
36 days with 3 CCDs
2 x 500 μm (2.2 g),
1 x 675 μm (2.9 g)

7 more days with 675 µm

Total exposure: ~0.3 kg.d

Best fit:

$$\begin{split} m_{\text{WIMP}} &= 26 \pm 46 \text{ GeV/c}^2 \\ \sigma_{\text{WIMP}} &= (7 \pm 16) \times 10^{-4} \text{ pb} \\ c_{\text{bkg}} &= 67 \pm 13 \text{ dru} \\ min(-\text{logL}) &= -396.5 \end{split}$$

Null hypothesis $C_{bkg} = 74 \pm 5 dru$ min(-logL)= -396.1

Dark Matter search analysis

Towards DAMIC100

DAMIC100: 100g of active Si in low-noise package inside existent installation at SNOLAB

★ We have 24, 16 Mpix CCD's (675 μ m, 5.9 g each) **★** Dec 2014: installation of the final DAMIC100 Cu box

- new box fits 18 CCD in current vessel
- Installed three 8 Mpix CCD's (675 µm) to study backgrounds

\star Feb 2015: Added N₂ box to remove radon. Cu vessel etching.

★ Mar/Apr/May 2015: +1 CCD (tot 4), modifications to internal CCD array to study backgrounds.

★ July 2015: first 16 Mpix DAMIC sensor packaged and tested

 8 Mpix CCD

DAMIC100 sensitiviy

Axions

Another **promising** hypothetical **particle** to solve the dark matter problem Peccei and Quinn - solution to the strong CP problem in QCD

Postulated global $U(1)_{PQ}$ symmetry spontaneously broken below energy scale f_a

Axion mass and decay constant f_a related to the pion: $m_a f_a pprox m_\pi f_\pi$

More precisely:

$$m_a \approx 0.6 \,\mathrm{eV} \frac{10^7 \mathrm{GeV}}{f_a}$$

All **couplings** to the axion are inversely proportional to f_a $g_{a\gamma\gamma} = \frac{\alpha g_{\gamma}}{\pi f_{\gamma}}$

 f_a unprescribed in theory, g_γ dimensionless model-dependent parameter

 f_a close to eletroweak symmetry breaking soon excluded

More general **axion-like** particle (ALP) models mass and decay constant are independent K. Olive et al, 2014 (PDG)

Two classes of models

KSVZ (Kim-Shifman-Vainshtein-Zakharov) "hadronic" class of models

 $g_{\gamma} \approx -0.97$

DFSZ (Dine-Fischler-Srednicki-Zhitnitskii)

more generic GUT inspired class of model

 $g_{\gamma} \approx 0.36$

The axion has a model-dependent coupling to two photons, through a triangle diagram.

$$\Gamma_{a \to \gamma \gamma} = \frac{g_{a \gamma \gamma}^2 m_a^3}{64\pi}$$
$$= 1.1 \times 10^{-24} \,\mathrm{s}^{-1} \left(\frac{m_a}{\mathrm{eV}}\right)^5$$

Decay life-time greater than age of universe, unless $m_a \ge 20 \text{ eV}$

The Axion Dark Matter eXperiment

$$P = g_{a\gamma\gamma}^2 \frac{\rho_a}{m_a} B_0^2 VC \min(Q_L, Q_a)$$

= 4 × 10⁻²⁶ W $\left(\frac{g_{\gamma}}{0.97}\right)^2 \frac{\rho_a}{0.5 \times 10^{-24} \text{g cm}^{-3}} \frac{m_a}{2\pi (\text{GHz})} \times \left(\frac{B_0}{8.5 \text{ T}}\right)^2 \frac{V}{0.22 \text{ m}^3} C \min(Q_L, Q_a),$

 ρ_a local axion density, B_0 strenth of static magnetic field, V cavity volume, C mode-dependent cavity factor, min(Q_L, Q_a) smaller of either the cavity or axion quality factors.

The axion signal quality factor is $Q_a = 10^6$, the ratio of their energy to energy spread

Signal **power** is expected to be **very weak**.

Cavity and amplifiers cooled to very **low temperature** to minimize **thermal noise**

The microwave cavity technique

Pierre Sikivie (1983) proposed an elegant experiment to detect dark matter axions utilizing a resonant microwave cavity immersed in a strong magnetic field.

Through the Primakoff interaction, axions could resonantly convert to a monochromatic microwave signal and be detected in a sensitive radio receiver when the cavity was tuned to the frequency corresponding to the axion's mass:

The Avien Derk Matter a Ynoriment

Exclusion plot for axion like particles

mass range ~1µeV - 10 meV

upper: axions can be produced in astrophysical bodies and escape, new sources of energy loss

lower: relic density of the axion is smaller or equal to the observed dark matter density $\Omega_{\rm dm}$

K. Olive et al, 2014 (PDG)

The ADMX-Gen2 science prospects

Summary

- \star Intense experimental efforts in **direct detection** of dark matter.
- ★ In spite of observed "anomalies" that could be interpreted as WIMPs, no convincing evidence of direct detection
- ★ Direct detection searches are **progressing**: lower cross sections, lower and higher mass
- ★ New **particle** candidates (axions, etc..)
- * New **technologies** expanding the physics reach
- ★ Experiments running now or under construction: improve sensitivity reach by 1 or 2 orders of magnitude in next years
- ★ Planned experiments to reach the neutrino bound within one decade

XENON100 spin independent limit

XENON100, Phys. Rev. Lett. 2012