Impacts of the nuclear symmetry energy on neutron star crusts

> Bao Shishao Nankai University

20-22 Oct. 2014 QCS, KIAA, PKU, Beijing

Possible structure of a neutron star pasta J. M. Lattimer and M. Prakash, Science, 304, 536 (2004) A NEUTRON STAR: SURFACE and INTERIOR 'Spaghetti Swiss CRUST: CORE: droplet rod Homogeneous Neutron Matter Superfluid ATMOSPHERE ENVELOPE CRUST OUTER CORE INNER CORE Magnet slab tube field Polar cap Cone of open magnetic field crust-core bubble **Neutron Superfluid** transition Neutron Superfluid + Neutron Vortex Proton Superconductor Neutron Vortex Nuclei in a lattice Magnetic Flux Tube

Symmetry energy

At nuclear saturation density $(n_0 \approx 0.15 \text{ fm}^{-3})$:

$$E_{sym} = 30 \pm 4 \text{ MeV} \qquad \longleftarrow \text{ experiments} \qquad \longrightarrow \qquad 20 \longleftrightarrow 115 \text{ MeV}$$

$$L = 3n_0 \left[\frac{\partial E_{sym}(n_b)}{\partial n_b} \right]_{n_b = n_0}$$

A. W. Steiner, Phys. Rev. C77, 035805 (2008).

- D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev. Lett. 50, 2066 (1983).
- Z. Zhang and L. W. Chen, Phys. Lett. B 726, 234 (2013).

Liquid drop model:

G. Watanabe, K. lida, and K. Sato, Nucl. Phys. A 676, 455 (2000).

C. Ducoin, J. Margueron, and C. Providência, Europhys. Lett. 91, 32001 (2010).

Macroscopic model:

K. Oyamatsu and K. Iida, Phys. Rev. C 75, 015801 (2007).

Electron screening effect in pasta phase:

T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tanigawa, and S. Chiba, Phys. Rev. C 72, 015802 (2005).

G. Watanabe and K. Iida, Phys. Rev. C 68, 045801 (2003).

Relativistic mean-field theory:

S. S. Avancini, D. P. Menezes, M. D. Alloy, J. R. Marinelli, M. M. W. Moraes, and C. Providência, Phys. Rev. C78, 015802 (2008).

S. S. Avancini, S. Chiacchiera, D. P. Menezes, and C. Providência, Phys. Rev. C 82, 055807 (2010). F. Grill and C. Providência, Phys. Rev. C 85, 055808 (2010).

M. Okamoto, T. Maruyama, K. Yabana, and T. Tatsumi, Phys. Rev. C 88, 025801 (2013).

- S. S. Bao and H. Shen, Phys. Rev. C 89, 045807 (2014).
- S. S. Bao, J. N. Hu, Z. W. Zhang, and H. Shen, Phys. Rev. C 90, 045802 (2014).

Parameters

n_{fix}=n₀

TM1

L (MeV)	50.0	60.0	70.0	80.0	90.0	100.0	110.8
$g_{ ho}$	13.8757	12.6431	11.6896	10.9237	10.2910	9.7569	9.2644
$\Lambda_{\rm v}$	0.0254	0.0212	0.0171	0.0129	0.0087	0.0045	0.0000

IUFSU

L (MeV)	47.2	50.0	60.0	70.0	80.0
$g_{ ho}$	13.5899	12.6766	10.4742	9.1260	8.1926
$\Lambda_{\rm v}$	0.0460	0.0433	0.0336	0.0238	0.0141

$n_{fix}=0.11 \text{ fm}^{-3}$

TM1

L (MeV)	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.8
$g_ ho$	13.9714	12.2413	11.2610	10.6142	10.1484	9.7933	9.5114	9.2644
Λ_{v}	0.0429	0.0327	0.0248	0.0182	0.0128	0.0080	0.0039	0.0000

IUFSU

L (MeV)	47.2	50.0	60.0	70.0	80.0	90.0	100.0	110.0
$g_{ ho}$	13.5900	12.8202	11. <mark>1</mark> 893	10.3150	9.7537	9.3559	9.0558	8.8192
Λ _v	0.0460	0.0420	0.0305	0.0220	0.0153	0.0098	0.0051	0.0011

Pasta phases

L (MeV)

Coexisting phase method

Thomas-Fermi approximation

Sizes of the Wigner-Seitz cell and its dense part in Thomas-Fermi approximation

$$r_{d} = \begin{cases} r_{ws} \left(\frac{\langle n_{p} \rangle^{2}}{\langle n_{p}^{2} \rangle}\right)^{1/D} \\ \text{(droplet, rod, and slab),} \\ r_{ws} \left(1 - \frac{\langle n_{p} \rangle^{2}}{\langle n_{p}^{2} \rangle}\right)^{1/D} \\ \text{(tube and bubble).} \end{cases}$$

D =3, 2, 1

Proton number Z_d and nucleon number A_d of the droplet in Thomas-Fermi approximation

Crust-core transition properties obtained in Thomas-Fermi approximation

Summary

1 Within the relativistic mean-field (RMF) theory, two different methods, coexisting phase method and Thomas-Fermi approximation, are adopted to study the properties of pasta phases and crust-core transition.

2 The symmetry energy slope L plays an important role in the pasta phases and crust-core transition.

3 The main results obtained here are consistent with the ones in other methods.

4 A smaller slope L predicts more complex pasta phases and more nucleon and proton numbers in the droplet.

5 Crust-core transition density and the proton fraction at this point decrease with symmetry slope L.

6 There is no monotonic relation between symmetry slope L and the pressure at crust-core density.

Thank you!