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At nuclear saturation density (n0≈0.15 fm-3) : 

experiments 
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  nucleon interaction:  

 Relativistic mean-field (RMF) theory 
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Sizes of the Wigner-Seitz cell and its dense part 
                in Thomas-Fermi approximation 
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Proton number Zd and nucleon number Ad of the droplet 
in Thomas-Fermi approximation 



Crust-core transition 
properties obtained in 
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Summary 

        Within the relativistic mean-field (RMF) theory, two different methods, coexisting 
phase method and Thomas-Fermi approximation, are adopted to study the properties 
of pasta phases and crust-core transition. 

       There is no monotonic relation between symmetry slope L and the pressure at 
crust-core density. 
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        The symmetry energy slope L plays an important role in the pasta phases and  
crust-core transition. 
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The main results obtained here are consistent with the ones in other methods.  3 

        A smaller slope L predicts more complex pasta phases and more nucleon and 
proton numbers in the droplet. 
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       Crust-core transition density and the proton fraction at this point decrease with 
symmetry slope L. 
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? Finite temperature 




