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Outline
•

 
Motivation 

•
 

Introduction
•

 
The order of QCD phase transition

•
 

Boiling of primordial quark nuggets to hadrons
–

 
Classical nucleation model; BHF for the hadron

 
phase; CDDM for the quark phase.

–
 

The results

•
 

Summary and future plans
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•
 

(proposed)
 

Much of the baryon(A) number of the Universe condensed 
into quark nuggets (QNs) during the quark-hadron

 
phase transition;

•
 

Provide an explanation for dark matter in terms of QCD effect only!?

Motivation: Cosmic separation of phases
Witten, PRD 1984
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1. Boiling
(nucleation of hadronic

 
bubbles,

namely quark-hadron
 

phase transition);

2. Surface evaporation
(depend on the dynamic of
the neutrino-driven cooling)
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(proposed)
 

Much of the baryon(A) number of the Universe condensed 
into quark nuggets (QNs) during the quark-hadron

 
phase transition;

•
 

Provide an explanation for dark matter in terms of QCD effect only!?

•
 

Is it possible to survive in the hot QCD medium (T~150MeV)?

Motivation: Cosmic separation of phases
Witten, PRD 1984

1. Boiling
(nucleation of hadronic

 
bubbles,

namely quark-hadron
 

phase transition);

2. Surface evaporation
(depend on the dynamic of
the neutrino-driven cooling)

General arguments:
• Large A, easy to boil;
• Small A, easy to evaporate.

Hot QCD 
environment

QN

(e±,,)

HB

HB
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Intro: the order of QCD phase transition

QN

HB

HB•
 

Boiling
(nucleation of hadronic

 
bubbles,

namely quark-hadron
 

phase transition)
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Intro: the order of QCD phase transition

Empirically known 
around normal nuclear 
matter density.

Color-Flavor-Locked phase at 
asymptotically high density

Crossover 
(=0,

 

T~150

 
MeV) from 
LQCD;

eg: Y. Aoki, et al, 
Nature (2006).

QN

HB

HB•
 

Boiling
(nucleation of hadronic

 
bubbles,

namely quark-hadron
 

phase transition)

Fig. from C. Sasaki, NPA 2009
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• The existence of a QCD critical 
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around normal nuclear 
matter density

Color-Flavor-Locked phase at 
asymptotically high density

Crossover 
(=0,

 

T~150

 
MeV) from 
LQCD;

QN

HB

HB•
 

Boiling
(nucleation of hadronic

 
bubbles,

namely quark-hadron
 

phase transition)

1st  assumed.
Unknown: 
• The

 

order
 

of the QCD phase 
transition at ≠0?

• The existence of a QCD critical 
point? Its location?

• The coincidence

 

of the 
transition of chiral

 

& 
deconfinement? 
…

Fig. from C. Sasaki, NPA 2009
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Boiling of primordial quark nuggets
 in the early universe (≠0)
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•
 

Earlier studies ignored
 

interactions between quarks and used 
phenomenological models for the hadron

 
phase.

•
 

Boiling possible or not 
still uncertain.

The boiling of quark nuggets
QN

HB

HB

Alcock & Olinto, PRD 1989
Madsen & Olesen, PRD 1991
Lugones & Horvath, PRD 2004
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•
 

Whether boiling is important or not depends on the formation rate of 
critical

 
bubbles;

Classical nucleation theory
L. D. Landau and E. M. Lifschitz, <Statistical Physics>

QN

HB

HB
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•
 

Whether boiling is important or not depends on the formation rate of 
critical

 
bubbles;

•
 

Formulas:

Classical nucleation theory
L. D. Landau and E. M. Lifschitz, <Statistical Physics>

QN

HB

HB

Formation rate
 

of critical bubbles:

the work done to form a bubble of radius r:

The work of a critical-size bubble can be obtained by maximizing W w.r.t. r:
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To determine the critical Aboil
 

;
Madsen & Olesen, PRD1991

QN

HB

HB

• Formation rate
 

of critical bubbles:
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To determine the critical Aboil
 

;

Constant baryon density 
assumed in the nuggets.

Madsen & Olesen, PRD1991

QN

HB

HB

• Formation rate
 

of critical bubbles:

•

where

Madsen & Olesen, PRD1991
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To determine the critical Aboil
 

;

Constant baryon density 
assumed in the nuggets.

Madsen & Olesen, PRD1991
 High powers and exponential term in Eq. would result   

in a rapid dependence on parameters (P, , T).

QN

HB

HB

• Formation rate
 

of critical bubbles:

•

where
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QN

HB

HB
To determine the critical Aboil

 

;

 High powers and exponential term in Eq. would result   
in a rapid dependence on parameters (P, , T).
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•
 

Pressure difference
 

between the phases calculated from the equation:

•
 

Surface tension
 



 
of QN can be calculated consistently as the free energy 

per unit surface area, from all fermion
 

species (i =u; d; s; e).

QN

HB

HB
To determine the critical Aboil

 

;

 High powers and exponential term in Eq. would result   
in a rapid dependence on parameters (P, , T).

L. D. Landau and E. M. Lifschitz, <Statistical Physics>
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•
 

Based on our previous calculations of hybrid neutron stars (Peng, AL, 
Lombardo, PRC 2008)：

–

 

Using the BHF
 

nuclear many-body approach for hadron

 

phase;
–

 

Using the CDDM
 

model for quark phase;

Pressure difference between the phases
QN

HB

HB
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Lombardo, PRC 2008)：

–

 

Using the BHF
 

nuclear many-body approach for hadron

 

phase;
–

 

Using the CDDM
 

model for quark phase;

Pressure difference between the phases
QN

HB

HB

NNN 3 body force (3BF) included in non-rel. BHF
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• 3BF substantially improve saturation; 
• Micro 3BF stiffer than pheno

 
3BF at high 

densities: Hadron
 

EoS
 

dependence.

A. Li, G. F. Burgio, U. Lombardo, 
and W. Zuo, PRC 2006
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Based on our previous calculations of hybrid neutron stars (Peng, AL, 
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–
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nuclear many-body approach for hadron
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–
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model for quark phase;

Pressure difference between the phases
QN

HB

HB

Confined-density-dependent-mass (CDDM) model

X. J. Wen, et al., PRC 2005
G.X. Peng et al, PRC 1999

C. J. Xia, G. X. Peng, et al. PRC 2014
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•
 

Based on our previous calculations of hybrid neutron stars (Peng, AL, 
Lombardo, PRC 2008)：

–

 

Using the BHF
 

nuclear many-body approach for hadron

 

phase;
–

 

Using the CDDM
 

model for quark phase;

Pressure difference between the phases
QN

HB

HB

Confined-density-dependent-mass (CDDM) model

X. J. Wen, et al., PRC 2005
G.X. Peng et al, PRC 1999

C. J. Xia, G. X. Peng,et al. PRC 2014

•
 

Stability window for D1/2: (158-
 

270)MeV;
•

 
Lower

 
limit from nuclear physics, 

Upper limit from vacuum quark condensation.

•
 

LQCD favored area (161 MeV~195 MeV).
Aoki, et al. hep-lat/13108555
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Parameter
•

 
Two hadron

 
EoSs: Stiff (with Micro 3BF) and Soft (with Pheno

 
3BF);

•
 

D1/2

 

= 158MeV: Absolutely stable strange quark matter;
170MeV: LQCD favored area (161 MeV~195 MeV);
225MeV: Near the upper limit of D parameter.
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Results

Surface tension             Baryon chemical potential

•
 

Two hadron
 

EoSs: Stiff (with Micro 3BF) and Soft (with Pheno
 

3BF);
•

 
D1/2

 

= 158MeV: Absolutely stable strange quark matter;
170MeV: LQCD favored area (161 MeV~195 MeV);
225MeV: Near the upper limit of D parameter.
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Results

Pressure differences

•
 

Two hadron
 

EoSs: Stiff (with Micro 3BF) and Soft (with Pheno
 

3BF);
•

 
D1/2

 

= 158MeV: Absolutely stable SQM;
170MeV: LQCD favored area (161 MeV~195 MeV);
225MeV: near the upper limit of D parameter.

.

.
Softer Hadron

 
EoS

Smaller pressure gap
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Results

Pressure differences

•
 

Two hadron
 

EoSs: Stiff (with Micro 3BF) and Soft (with Pheno
 

3BF);
•

 
D1/2

 

= 158MeV: Absolutely stable SQM;
170MeV: LQCD favored area (161 MeV~195 MeV);
225MeV: near the upper limit of D parameter.

•
 

More sensitive to D parameter, than to the hadron
 

EoS.

Softer Hadron
 

EoS

Smaller pressure gap
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•
 

Two hadron
 

EoSs: Stiff (with Micro 3BF) and Soft (with Pheno
 

3BF);
•

 
D1/2

 

= 158MeV: Absolutely stable SQM;
170MeV: LQCD favored area (161 MeV~195 MeV);
225MeV: near the upper limit of D parameter.

•
 

More sensitive to D parameter, than to the hadron
 

EoS.

Results

The critical Aboil
Softer Hadron

 
EoS

Smaller pressure gap

Larger work for 
a critical-size bubble

Lower probability
of bubbles nucleation

Larger Aboil
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•
 

Two hadron
 

EoSs: Stiff (with Micro TBF) and Soft (with Pheno
 

TBF);
•

 
D1/2

 

= 158MeV: Absolutely stable SQM;
170MeV: LQCD favored area (161 MeV~195 MeV);
225MeV: near the upper limit of D parameter.

•
 

More sensitive to D parameter, than to the hadron
 

EoS.

Results

The critical Aboil •
 

Surprisingly! 
Other D values result in 
an extremely large Aboil

 

, 
and boiling might not 
happen;

•
 

Boiling might be 
important only ~170MeV

 (values from Lattice).
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•
 

Further comments:
QNs

 
might unlikely

 
a candidate for DM, since only boiling can destroy 

them very sufficiently (Companied by yet unknown consequences for the 
spectrum of the emitted photons).

Results

The critical Aboil •
 

Surprisingly! 
Other D values result in 
an extremely large Aboil

 

, 
and boiling might not 
happen;

•
 

Boiling might be 
important only ~170MeV

 (values from Lattice).
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Summary and and future plans

•
 

Boiling revisited using updated micro. many-body theory; 
•

 
Boiling very possibly important for destroying (large) 
primordial QN;

•
 

+ Evaporation; 
•

 
Hyperon

 
effect;

•
 

Color superfluity effect (for T<T

 

);
•

 
Other important aspects from the audience.

Thank you very much!



校園鳥瞰
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backup
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• G: In-medium effective Interaction matrix
• Q: Pauli operator
• Starting energy
• e: s.p. energy

Brueckner-Hartree-Fock
 

(BHF) model 58 -present

Input quantities

• Interaction

• Baryon 
density

• Asymmetry 
parameter

(P. Ring’s lectures)

•
 

A theory based on independent nucleon pair, for handling the repulsive core of 
nuclear force.
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• G: In-medium effective Interaction matrix
• Q: Pauli operator
• Starting energy
• e: s.p. energy

Brueckner-Hartree-Fock
 

(BHF) model 70 -present

(P. Ring’s lectures)

•
 

A theory based on independent nucleon pair, for handling the repulsive core of 
nuclear force.
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Finite-temperature BHF model with TBF

W. Zuo, Z. H. Li, AL, U. Lombardo, HJ Schulze, 2004-
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TBF (Three body force)
•

 
Microscopic TBF;
Exchange of 

 
via Δ(1232), R(1440), NN

with parameters compatible with 2BF (Paris,V18,...)

•
 

Phenomenological
 

TBF.
Directly add the TBF operators
Only 2-TBF + phenomenological repulsion
Parameters fitted from saturation point.

P. Grangé

 

et al., PRC 1989

TBF: Nucleon structure effect +
 

Relativistic effect

(Schulze’s talk)
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•
 

TBF substantially improve saturation; 
•

 
Micro TBF more stiffer than pheno

 
TBF at high densities.

Symmetric nuclear matter

Pur
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 (

=1
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 (

=0
)

TBF included in BHF
(Lombardo’s talk)
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• M(R) relation is unique
 

to the underlying EoS;
• Very massive

 
NS observed recently.

Demorest et. al, Nature 2010
Antoniadis et al., Science 2013

(Bombaci’s
 

talk)
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The variation of    
the quark mass with 
density mimics the 
strong interaction 
between quarks.

Quark 
confinement

Asymptotic 
freedom

G.X. Peng

 

et al, PRC (1999)

Confined-density-dependent-mass (CDDM) model

Quark model with chiral
 mass scaling

High-order perturbative

 

interactions included, see C. J. Xia, G. X. Peng,et al. PRC 2014
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Confined-density-dependent-mass (CDDM) model

•
 

Stability window for D1/2: (158-
 

270)MeV;

•
 

Lower
 

limit from nuclear physics, Upper limit from vacuum quark condensation;

Peng, AL, Lombardo, PRC 2008

X. J. Wen, et al., PRC 2005

• Finite-temperature extension
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Cosmic separation of phases

H: High-temperature quark
 

phase; 

L: Low-temperature hadron
 

phase;

Witten, PRD 1984

QN
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