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NS - EOS 

•  physics in NS crust 

•  low-mass NSs 
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(1) TOV equation 
(2) equation of state 
    - model 
    - nuclear interaction 
    - composition 

constraints from the terrestrial 
nuclear experiments 

≀≀ 
properties around  

the saturation density 



Crust in NSs 
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neutron stars 

•  Structure of NS 

– solid layer (crust) 
– nonuniform structure (pasta) 

– fluid core (uniform matter) 

•  Crust thickness ≲ 1km 

•  Determination of EOS for  
high density (core) region could be 
quite difficult on Earth 

•  Constraint on EOS via observations 
of neutron stars 

– stellar mass and radius 

– stellar oscillations (& emitted GWs) 

　“(GW) asteroseismology”   
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QPOs in SGRs 

•  Quasi-periodic oscillations (QPOs) in afterglow of giant flares from 
soft-gamma repeaters (SGRs) 
–  SGR 0526-66 (5th/3/1979) : 43 Hz 

–  SGR 1900+14 (27th/8/1998) : 28, 54, 84, 155 Hz 

–  SGR 1806-20 (27th/12/2004) : 18, 26, 30, 92.5, 150, 626.5, 1837 Hz 
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Strohmayer & Watts (2006) 

•  Crustal torsional oscillation ? 

•  Magnetic oscillations ? 

•  Asteroseismology 
➙ stellar properties 
   (M, R, B, EOS …) 

(Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06) 
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torsional oscillations 
•  axial parity oscillations 

–  incompressible 

–  no density perturbations 
•  in Newtonian case 

 

–  μ: shear modulus 

–  frequencies ∝ shear velocity  

–  overtones depend on crust thickness 
•  one can consider torsional oscillations  

independently of core EOS 

•  effect of magnetic field 
–  frequencies become larger 
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(Sotani+07, Gabler+12,13) 

(Hansen & Cioff  1980) 

vs = µ / !
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EOS near the saturation point 
•  Bulk energy per nucleon near the saturation point of 

symmetric nuclear matter at zero temperature; 
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we adopt the phenomenological EOS derived 
by Oyamatsu & Iida (2003), (2007) 



What we do 
•  EOS for core region is still uncertain. 

•  To prepare the crust region, we integrate from r=R. 

– M, R : parameters for stellar properties 

– L, K0 : parameters for curst EOS (Oyamatsu & Iida (2003), (2007)) 

 　→ For L ≳ 100MeV, pasta structure almost disappears  

•  In crust region, torsional oscillations are calculated. 
– considering the shear only in spherical nuclei. 
– frequency of fundamental oscillation ∝ vs (vs

2 ̃ μ/H ) 

– calculated frequencies could be lower limit 
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ρp ρs 
density 

crust core 

pasta nuclei 

for bcc lattice 
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ni : number density of quark droplet 
Z : charge of quark droplet 
a : Wigner-Seitz radius 



0t2 without superfluidity 
•  For M=1.4M⊙ & R=12km, 

calculated frequencies 0t2 

•  0t2 is almost independent 
of the value of K0 

•  For R=10̃14 km and 
M/M⊙=1.4̃1.8， 
similar dependence on K0 

•  One can write fitting line 

•  Focus on L dependence of 0t2 
•  0t2 becomes smaller with larger R and M. 
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HS+2012a 

M↑ 
R↑ 
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Constraint on L 

•  For R=10km̃14km & M/M⊙=1.4̃1.8, 

0t2 are calculated 

•  Assuming that the observed QPOs 
would come from torsional oscillations 

•  0t2 is the smallest frequency among 
a lot of torsional oscillations 

–  0t2 should be equal to or smaller than 
the smallest observed QPOs frequency 

•  Consequently, L ≳ 50 MeV. 
–  For L ≳ 50 MeV, pasta region could be very narrow 

–  Modification due to the pasta effect should be small 

–  This is first constraint in the symmetry parameter with 
astronomical observations 
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Effect of superfluidity 
•  For ρ ≳ 4 × 1011 g cm-3, neutron could drip from nuclei 

•  Some of dripped neutron play a role as superfluid 

•  Effective enthalpy affecting on the shear oscillations could be 
reduced 
-  shear speed (vs

2 ̃ μ/H ) increases due to the effect of superfluidity 

•  0tl could also increase due to the effect of superfluidity  

•  While, the fraction of superfluid  
neutron in dripped neutron is  
still unknown… 

-  Chamel (2012): superfluid neutron  
are not so much (̃10-30%?) 

•  0tl with using a parameter of  
Ns/Nd for R=14km & M=1.8M⊙ 

Oct/22/2014 Quarks and Compact Stars@KIAA, Peking University 

HS+2012b 

Ns/Nd ↑ 
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identification of SGR 1806-20 
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constraint on L via SGR 1806-20 
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identification of SGR 1900+14 
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1.4 M⊙ & 12 km 
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constraint on L via SGR 1900+14 
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allowed region for L 
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other constraints on L 

•  other constraints suggests L ̃ 60±20 MeV ? 
–  our results may be larger than the previous experimental constraints.  
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Low-mass NSs 
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Although simple
average mass of
w.d. companions
is 0.23 M⊙ larger,
weighted average is
0.04 M⊙ smaller

Champion et al. 2008

Demorest et al. 2010

Antoniadis et al. 2013

Romani et al. 2012

vanKerkwijk 2010

J. M. Lattimer Symmetry Energy and Neutron Star Structure

M=M⊙ 

Lattimer 2013 

0.87±0.07M⊙ (eccentric orbit) 
1.00±0.10M⊙ (circular orbit) 

Rawls+ (2011) 

low	
  mass	
  NS	
  in	
  4U	
  1746-­‐37	
  
by	
  Li’s	
  talk	
  on	
  Monday	




observations of NSs 
•  candidates of low-mass NSs have been also discovered in 

binary system (Lattimer & Prakash 2011) 

•  radiation radius of X-ray source (Rutledge+ 2002) 
  e.g.) R∞ = 14.3±2.1km : CXOU 132619.7-472910.8 in omega Cen 

•  M & R from thermal spectra from quiescent low-mass X-
ray binaries (Guillot+ 2013; Lattimer & Steiner 2013) 
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Figure 15. Similar to Figure 9, corresponding to Run 7. Here, all possible assumptions have been relaxed in order to obtain a RNS measurement that is least affected
by systematic uncertainties. The NH parameters are left free; and Gaussian Bayesian priors and PL components are included. This results in an RNS measurement:
RNS = 9.1+1.3

−1.5 km.
(A color version of this figure is available in the online journal.)

[6 km, 20 km], and the MNS range is [0.3 M", 2.5 M"] com-
pared to [5 km, 30 km] and [0.5 M", 3.0 M"] with nsatmos.
This run (8) was done with the same characteristics as Run 1.

When comparing the posterior distributions of the parameters
and MNS–RNS contours obtained with nsagrav (Figure 16 for
Run 1 and Table 7) to those obtained with nsatmos (Figure 9
and Table 5), some consistencies can be noticed. However,
not all distributions are consistent between the two models.
Specifically, for M28, M13, and NGC 6304, one can notice
that an additional distinct lobe at high MNS appears in the
MNS–RNS parameter space. This appears to be because the
nsagrav model as implemented in XSPEC gives different values
in this parameter space than returned by nsatmos; the authors
of this model state that this is because the model is inapplicable
in this parameter region18 (V. E. Zavlin and G. G. Pavlov 2012,
private communication). For example, some sets of MNS–RNS
allowed by nsagrav and giving an acceptable χ2-value lead
to imaginary values of R∞. It is important for an observer to
keep this fact in mind, otherwise, results produced by the XSPEC

18 The MNS–RNS space where nsagrav is applicable can be seen here
http://heasarc.gsfc.nasa.gov/xanadu/xspec/models/m-r.pdf.

implementation of nsagrav could be misinterpreted. In light of
the pitfall mentioned here, the nsagrav model should be used
with care.

5. DISCUSSION

This paper presented the simultaneous analysis of the spectra
from five qLMXBs in GCs with a common RNS parameter
for all targets. The posterior distributions for RNS, MNS, R∞,
kTeff , and NH were obtained from MCMC simulations, which
included Gaussian Bayesian priors for the distances to the GCs
hosting the targets. In this discussion section, the original work
performed here and the data used are summarized. This is
followed by a subsection discussing various possible biases
resulting from the MCMC analysis. The discussion finishes with
the implication that the resulting RNS measurement may have
for the determination of the dEoS.

5.1. List of New Analysis Methods, Data and Results

The following two paragraphs aim at summarizing the novel
approach to the analysis of the NS thermal spectra, and unused
data presented in this paper. The MCMC framework for spectral

21
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low-mass NS models 

•  low-mass NSs 
–  low-central density 
–  EOS for low-density region plays an important role 

–  may be able to discuss the stellar models without the EOS for high 
density region  this is an advantage to consider low-mass NSs! 

•  EOS of nuclear matter for ρ≲ρ0 (normal nuclear density) 
would be determined with reasonable accuracy by terrestrial 
nuclear experiments. 
–  saturation parameters may be constrained via such terrestrial 

experiments.  

•  For ρ≲ 2ρ0, one may almost neglect an uncertainty of three 
nucleon interaction (Gandolfi+ 2012) and contribution from 
hyperon (or quark etc...). 

          we focus on the NS models for ρ≲ 2ρ0  
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EOS near the saturation point 
•  Bulk energy per nucleon near the saturation point of 

symmetric nuclear matter at zero temperature; 
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unified EOS modes 
•  unified-EOS models 

–  based on the EOSs of nuclear matter with specific values of K0 & L 

–  consistent with empirical data of masses and radii of stable nuclei 

–  describing both the crustal and core regions of NS 

•  we especially focus on 
–  phenomenological EOS with various K0 & L  

(Oyamatsu & Iida 2003; 2007) 

–  EOSs based on relativistic mean field models 

•  Shen EOS (Shen+ 1998)  
•  Miyatsu EOS (Miyatsu+ 2013) 

–  Skyrme-type effective interaction 

•  FPS (Pethick+ 1995), 
•  SLy4 (Douchin & Haensel 2001) 
•  BSk19, BSk20, BSk21 (Potekhin+ 2013) 
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EOSs based on the different 
theoretical models 



MR relations 
•  NS models are constructed with various sets of K0 & L 

•  We can find the specific combination of K0 & L describing 
the low-mass NSs, 
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vanishes. It is not clear up to what density the adopted unified-EOSs are applicable. Nonetheless,

one can expect that the uncertainty from three-neutron interactions in the EOS of pure neutron

matter becomes relevant for ρ ! 2ρ0, as suggested by quantum Monte Carlo calculations28. We

thus examine the stellar models for ρc ≤ 2ρ0.

Fig. 1(a) shows the resultant M -R relation. To systematically describe various stellar models,

we introduce a new auxiliary parameter η defined as

η = (K0L
2)1/3. (1)

Remarkably, the M -R relation changes almost smoothly with η. In fact, we carefully chose the

powers of the parameters K0 and L in finding η. Note that we do not adopt the OI-EOS with

L " 10 MeV14, 15, because the pressure can become negative inside the star, which may tell us the

lower limit of η as η ! 30 MeV. Meanwhile, the upper limit sets that η " 200 MeV (Extended

Data Table 1) to examine in the wide-range parameter space, which is significantly higher than the

usual expectations in the nuclear physics7.

From the observational viewpoint, the radiation radius R∞ = R/
√

1 − 2GM/Rc2 and the

gravitational redshift z = 1/
√

1 − 2GM/Rc2 − 1 may be more relevant in describing the stellar

properties, which relation can be written as in Fig. 1(b). Actually, the detected photon flux is

proportional to (R∞/D)2, where D is the distance from the Earth. The gravitational redshift is

associated with the shift of atomic absorption lines emitted from stellar surface.

The smooth change of the stellar properties with η suggests that not only future terrestrial

4

Table 1: EOS parameters. K0 is incompressibility, L is the density dependence of the nu-

clear symmetry energy, and η is a new nuclear matter parameter defined as η = (K0L2)1/3.

EOS K0 (MeV) L (MeV) η (MeV)

OI-EOS 180 31.0 55.7

180 52.2 78.9

230 42.6 74.7

230 73.4 107.4

280 54.9 94.5

280 97.5 138.6

360 76.4 128.1

360 146.1 197.3

Shen 281 114 154.0

Miyatsu 274 77.1 117.7

FPS 261 34.9 68.2

SLy4 230 45.9 78.5
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Figure 2: Neutron star masses in (a) and the gravitational redshifts of neutron star in (b) as a function of η. The

stellar models with the various unifrid-EOSs are constructed for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0. The solid, broken, and

dotted lines are the linear fitting to the cases of ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 (see text for details).
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function of ρc/ρ0. In the figure, the marks denote the coefficients obtained in Eq. (2), while the solid and broken lines

correspond to the fitting curve for c0 and c1. We consider the stellar models only for ρc ! 0.9ρ0 to avoid the unstable

neutron star models.
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nuclear experiments but also simultaneous measurements of stellar properties, such as M and R,

could constrain η, which could in turn lead to restriction of stellar models. In particular, observa-

tions of low-mass neutron stars would be essential. For example, the radiation radius of the X-ray

source, CXOU 132619.7–472910.8, in the globular cluster NGC 5139 (ω Cen) has been deter-

mined as R∞ = 14.3 ± 2.1 km from the Chandra data29. The allowed region from this radiation

radius is shown in Fig. 1(a) and (b) with the shaded region. This is consistent with various values

of η, but future precise determination of R∞ could constrain η, if M is low enough. Additionally,

thermal spectra detected from quiescent low-mass X-ray binaries are expected to give M and R

simultaneously5, 6, which could tell us a stringent constraint on η.

To examine the dependence of the stellar properties on η more clearly, we plot the stellar

masses for ρc = 2.0ρ0, 1.5ρ0, and 1.0ρ0 in Fig. 2(a). From this figure, we find that the stellar

masses with the fixed central density can be approximately expressed as a linear function of η,

M

M"
= c0 + c1

( η

100 MeV

)
, (2)

where c0 and c1 are constants depending on ρc. The validity of η is now evident. The deviation

from this formula for ρc = 2ρ0 is larger than that for ρc = ρ0, which could be due to the effect of

three-nucleon interaction. Moreover, we find that the coefficients in equation (2) can be expressed

well with the quadratic curve as a function of uc ≡ ρc/ρ0 within the accuracy less than a few

percent as in Fig. 3. Finally, we can derive the mass formula of low-mass neutron stars;

M

M"
= 0.371 − 0.820uc + 0.279u2

c − (0.593 − 1.254uc + 0.235u2
c)

( η

100 MeV

)
, (3)

where we consider the stellar models for ρc ! 0.9ρ0, because the stellar models for ρc " 0.9ρc can

5



•  via the simultaneous observations of M & z (or R or R∞), one 
could extract the values of η& ρc !! 
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become unstable, depending on EOSs.

We also find that the gravitational redshift with the fixed central density can be approximately

expressed as a linear function of η, as in Fig. 2(b). Then, in the same way to derive equation (3),

we can derive the theoretical formula of gravitational redshift

z = 0.00859 − 0.0619uc + 0.0255u2
c − (0.0429 − 0.108uc + 0.0120u2

c)
( η

100 MeV

)
. (4)

Via the simultaneous observations of mass and gravitational redshift could tell us the nuclear matter

parameter η and ρc, using equations (3) and (4).

Futhermore, we plot the stellar radii for ρc = 1.5ρ0 and 2.0ρ0 in Fig. 4. From this figure,

one can observe that the stellar radii strongly depend on the central density for η ! 90 MeV, while

converging to an almost linear function of η for η " 90 MeV expressed as

R [km] = 10.32 + 2.57
( η

100 MeV

)
. (5)

Note that this converging behavior holds for ρc = 1.5ρ0 ∼ 2ρ0. Again, one could find not only η

but also ρc with the mass and radius formulae derived here, via the direct observations of masses

and radii of low-mass neutron stars.

In summary, we have been first successful to derive the theoretical formulae of mass, radius,

and gravitational redshift for low-mass neutron stars, as functions of the stellar central density and

a new nuclear matter parameter η we found here. Via the direct observations of low-mass neutron

stars, such as the low-mass X-ray binaries, one can extract not only the nuclear matter parameter

but also the stellar central density, which enables us to unlock the neutron star physics.

6
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where we consider the stellar models for ρc ! 0.9ρ0, because the stellar models for ρc " 0.9ρc can

5

vanishes. It is not clear up to what density the adopted unified-EOSs are applicable. Nonetheless,

one can expect that the uncertainty from three-neutron interactions in the EOS of pure neutron

matter becomes relevant for ρ ! 2ρ0, as suggested by quantum Monte Carlo calculations28. We

thus examine the stellar models for ρc ≤ 2ρ0.

Fig. 1(a) shows the resultant M -R relation. To systematically describe various stellar models,

we introduce a new auxiliary parameter η defined as

η = (K0L
2)1/3. (1)

Remarkably, the M -R relation changes almost smoothly with η. In fact, we carefully chose the

powers of the parameters K0 and L in finding η. Note that we do not adopt the OI-EOS with

L " 10 MeV14, 15, because the pressure can become negative inside the star, which may tell us the

lower limit of η as η ! 30 MeV. Meanwhile, the upper limit sets that η " 200 MeV (Extended

Data Table 1) to examine in the wide-range parameter space, which is significantly higher than the

usual expectations in the nuclear physics7.

From the observational viewpoint, the radiation radius R∞ = R/
√

1 − 2GM/Rc2 and the

gravitational redshift z = 1/
√

1 − 2GM/Rc2 − 1 may be more relevant in describing the stellar

properties, which relation can be written as in Fig. 1(b). Actually, the detected photon flux is

proportional to (R∞/D)2, where D is the distance from the Earth. The gravitational redshift is

associated with the shift of atomic absorption lines emitted from stellar surface.

The smooth change of the stellar properties with η suggests that not only future terrestrial

4



radii of low-mass NSs 

•  with using the formulas of mass and gravitational redshift, 
one can also predict the radius of NS.  
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Fig. 4.— Neutron star radii as a function of η. The stellar models constructed from various

unified EOSs are given for ρc = 1.0ρ0 (black), 1.5ρ0 (red), and 2.0ρ0 (blue). The solid,

broken and dotted lines are the the formula values for the cases of ρc = 2.0ρ0, 1.5ρ0, and

1.0ρ0, respectively, obtained from equations (2) and (3). The thick straight line denotes the

converging behavior expressed by equation (4).



how to determine R 

•  Unlike M, R is generally much more difficult to determine 

•  Thermal emission from NS surface must be one of the 
good chances to obtain the information associated with R. 
–  thermonuclear X-ray bursts at NS surfaces 

–  photospheric radius expansion 
–  quiescent low-mass X-ray binaries 
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how to determine (M, R) 1 

•  Assuming that Eddington limit reaches at the stellar surface…  

•  Eddington luminosity 

 

•  X depends on an atmosphere model 
–  pure hydrogen: X = 1 
–  pure helium: X = 0 

–  solar H/He + Z=0.3Z⊙ : X = 0.74, where Z⊙= 0.0134 
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The gravity g on the NS surface is larger in comparison with the
Newtonian case due to the general relativity effects

g = GM
R2

(1 + z); (3)

therefore, the Eddington luminosity is larger, too:

LEdd = 4πGMc
κe

(1 + z) = 4πR2σSBT 4
Edd. (4)

Here TEdd is the maximum possible effective temperature on the
NS surface, κe = 0.2(1 + X) cm2 g−1 is the electron (Thomson)
scattering opacity, and X is the hydrogen mass fraction. The
observed Eddington luminosity is smaller for higher z:

LEdd,∞ = 4πGMc
κe

1
1 + z

. (5)

This is related to the observed Eddington flux

FEdd = LEdd,∞

4πD2
= GMc

κe D2

1
1 + z

(6)

and the Eddington temperature

TEdd,∞ =
(

gc

σSBκe

)1/4 1
1 + z

=
(

FEdd

σSB

)1/4(
R∞

D

)−1/2

, (7)

which is the effective temperature corresponding to the
Eddington flux at the NS surface corrected for the gravita-
tional redshift. We note here that the electron scattering opacity
decreases with temperature (e.g., Paczynski 1983; Pozdniakov
et al. 1983), and is reduced by about 7% at the temperature of
∼3 keV, which is typical for the upper layers of the luminous NS
atmospheres. This affects the luminosity where the Eddington
limit actually is reached.

3.2. Atmosphere Models and Color Correction

Numerous computations of X-ray bursting NS atmospheres
(London et al. 1984, 1986; Ebisuzaki 1987; Madej 1991; Pavlov
et al. 1991; Zavlin et al. 1996; Suleimanov & Poutanen 2006;
Suleimanov et al. 2011) show that their emergent spectra at high
luminosities are close to diluted blackbody spectra due to strong
energy exchange between high-energy photons and relatively
cold electrons at NS surface layers (Compton down-scattering),

FE ≈ w BE(Tc = fcTeff), (8)

where fc is the color-correction (or hardness) factor and w is the
dilution factor, which at high luminosities is very close to 1/f 4

c
(Suleimanov et al. 2011).

Spectra observed from the X-ray bursting NSs are close
to thermal, and usually they are fitted by a blackbody with
two parameters: the observed color temperature Tbb and the
normalization K = (Rbb(km)/D10)2. It is easy to find the
relations between various temperatures:

Tbb = fc T∞ = fc
Teff

1 + z
= Tc

1 + z
. (9)

The observed blackbody flux is then

F = σSBT 4
bb

R2
bb

D2
= σSBT 4

∞
R2

∞
D2

(10)

and we can find the relation between the normalization and the
NS radius:

R2
bb

D2
= R2

D2

(1 + z)2

f 4
c

= R2
∞

D2

1
f 4

c
. (11)

These formulae can be transformed into the relation between
color correction and normalization (Penninx et al. 1989; van
Paradijs et al. 1990):

K−1/4 = fcA, A = (R∞[km]/D10)−1/2. (12)

A combination of A and FEdd gives the Eddington temperature,

TEdd,∞ = 1.14×108 AF
1/4
Edd,−7 K = 9.81 AF

1/4
Edd,−7 keV, (13)

where FEdd,−7 = FEdd/10−7 erg cm−2 s−1.
A detailed comparison of the theoretical models with the data

requires the knowledge of the run of the color correction with
flux. Previous models covered the range of luminosities very
sparsely. Using our recently developed code (Suleimanov &
Poutanen 2006; Suleimanov et al. 2006; Suleimanov & Werner
2007), we have computed a very detailed set of models with the
luminosity varying by three orders of magnitude (Suleimanov
et al. 2011).

An atmosphere model is fully defined by the surface gravity
g, chemical composition, and the ratio of the luminosity to
the Eddington luminosity l = L/LEdd. The last parameter also
relates the effective temperature to the Eddington temperature
at the NS surface:

Teff = l1/4TEdd. (14)

We considered various chemical compositions (pure hydrogen,
pure helium, and a solar mixture of hydrogen and helium
with various metal abundances) and three surface gravities
log g = 14, 14.3, and 14.6. The (redshifted) radiation spectrum
from the NS atmosphere was then fitted with a diluted Planck
function in the 3–20 keV energy band (i.e., the range observed by
RXTE) to determine the color-correction factor fc (see Figure 6).
The behavior of fc at relatively high l depends mainly on the
hydrogen abundance X and very little on the surface gravity and
metal abundance.

3.3. Determining M and R Using the Touchdown Method

In an ideal situation if the observed X-ray emission indeed
comes from the passively cooling, fully visible NS and the
distance to the source is known, we can determine NS mass M
and radius R from two observables: the Eddington flux given by
Equation (6) and the NS apparent blackbody size in the cooling
tail, or quantity A = K−1/4/fc (see, e.g., Lewin et al. 1993).
The latter is related to the apparent size of the NS through the
color correction, R∞ = f 2

c Rbb, and fc is assumed to be known
in the burst tail from the theoretical considerations. Although
this method was proposed a long time ago, only recently have
strong claims appeared in the literature suggesting that it can
actually be used for determining accurate parameters of three
bursting NSs (Özel et al. 2009; Güver et al. 2010a, 2010b).

Using the approach advertised in the aforementioned papers,
one has to determine the Eddington flux from observations. For
PRE bursts it was assumed that it is reached at the “touchdown”
point (Damen et al. 1990), when the color temperature is highest
and the apparent blackbody area is lowest. The color-correction
factor fc at the late cooling phases of the PRE bursts was taken
to be close to 1.4 (Özel et al. 2009; Güver et al. 2010a, 2010b)
based on the models by Madej et al. (2004) and Majczyna et al.
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Figure 4. Evolution of the observed blackbody fluxes, color temperatures, and
normalizations K = R2

bb/D
2
10 for three bursts from 4U 1724–307 in 1996

November 8 (black circles), 2004 February 23 (blue diamonds), and 2004 May
22 (red triangles). The time variable is normalized to the characteristic decay
time τ , which is equal to 18.5, 2.54, and 3.52 s for these three bursts, respectively.
For the long burst, the zero time corresponds to the touchdown point (marked
by an arrow in the upper and middle panels), while the light curves were shifted
for the short burst so that the cooling tails coincide. The arrows show the times
when the spectra shown in Figures 2 and 3 were collected.
(A color version of this figure is available in the online journal.)

The evolution of the fitted parameters during the bursts is
shown in Figure 4. The time is normalized to the individual
flux decay timescales τ and shifted to allow an easy comparison
between the bursts. The time point, when the flux and the color
temperature Tbb reach their maximum values and the normaliza-
tion K has a minimum, is usually named the “touchdown” point
(shown by the arrow in the upper and middle panels of Figure 4
for the long burst). The maximal fluxes of the short bursts are
appreciably smaller than that for the long burst. Their normal-
izations do not show a significant rise at the early stages of the
bursts, indicating that the NS photosphere has not substantially
expanded.

The most serious difference between the short and long bursts
is the normalization value at the flux decay phase, which is
approximately two times larger in the long burst (Figure 5). The
natural explanation for that is the presence of the optically thick
accretion disk, which, in the soft state, blocks a significant part of
the NS apparent surface, while the hot, optically thin, transparent
accretion flow in the hard state does not affect the NS apparent
area much. In addition to that effect, there could be additional
differences in the physical conditions of the NS atmosphere (and
thus in spectral hardening factors), as the boundary/spreading

Figure 5. Evolution of the bursts in the flux–temperature plane for the three
bursts from Figure 4. The curves of constant R2

bb describing the decay phase
are also shown. The blackbody apparent area for the short bursts (dotted curve)
is a factor of two smaller than the corresponding area describing the long burst
(dashed curve).
(A color version of this figure is available in the online journal.)

layer in the soft state forces the NS atmosphere to rotate close to
Keplerian velocity (Inogamov & Sunyaev 1999; Suleimanov &
Poutanen 2006). We note that similar differences between short
and long bursts were also found in another X-ray bursting NS
(Galloway et al. 2008a; Zhang et al. 2010).

2.2. Distance to 4U 1724–307

4U 1724–307 resides in the globular cluster Terzan 2. The
distance to that D = 7.5 ± 0.7 kpc was measured by Kuchinski
et al. (1995), while Ortolani et al. (1997) give D = 5.3 ± 0.6 kpc,
if RV = AV /E(B − V ) = 3.6 (more suitable for red stars; see
Grebel & Roberts 1995), or 7.7 ± 0.6 kpc if RV = 3.1. To cover
all possibilities, we further assume a flat distribution from 5.3
to 7.7 kpc with Gaussian tails of 1σ = 0.6 kpc on both ends.

3. METHOD

3.1. Basic Relations

Here we briefly present some well-known relations between
observed and real physical NS parameters, which arise due to
the gravitational redshift and the light bending. The observed
luminosity L∞, effective temperature T∞, and apparent NS
radius R∞ are connected with the luminosity at the NS surface
L, the effective temperature measured at the surface Teff , and
the NS circumferential radius R and mass M by the following
relations (Lewin et al. 1993):

L∞ = L

(1 + z)2
, T∞ = Teff

1 + z
, R∞ = R (1 + z), (1)

with the redshift factor

1 + z = (1 − 2GM/Rc2)−1/2. (2)
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layer in the soft state forces the NS atmosphere to rotate close to
Keplerian velocity (Inogamov & Sunyaev 1999; Suleimanov &
Poutanen 2006). We note that similar differences between short
and long bursts were also found in another X-ray bursting NS
(Galloway et al. 2008a; Zhang et al. 2010).

2.2. Distance to 4U 1724–307

4U 1724–307 resides in the globular cluster Terzan 2. The
distance to that D = 7.5 ± 0.7 kpc was measured by Kuchinski
et al. (1995), while Ortolani et al. (1997) give D = 5.3 ± 0.6 kpc,
if RV = AV /E(B − V ) = 3.6 (more suitable for red stars; see
Grebel & Roberts 1995), or 7.7 ± 0.6 kpc if RV = 3.1. To cover
all possibilities, we further assume a flat distribution from 5.3
to 7.7 kpc with Gaussian tails of 1σ = 0.6 kpc on both ends.

3. METHOD

3.1. Basic Relations

Here we briefly present some well-known relations between
observed and real physical NS parameters, which arise due to
the gravitational redshift and the light bending. The observed
luminosity L∞, effective temperature T∞, and apparent NS
radius R∞ are connected with the luminosity at the NS surface
L, the effective temperature measured at the surface Teff , and
the NS circumferential radius R and mass M by the following
relations (Lewin et al. 1993):

L∞ = L

(1 + z)2
, T∞ = Teff

1 + z
, R∞ = R (1 + z), (1)

with the redshift factor

1 + z = (1 − 2GM/Rc2)−1/2. (2)
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The gravity g on the NS surface is larger in comparison with the
Newtonian case due to the general relativity effects

g = GM
R2

(1 + z); (3)

therefore, the Eddington luminosity is larger, too:

LEdd = 4πGMc
κe

(1 + z) = 4πR2σSBT 4
Edd. (4)

Here TEdd is the maximum possible effective temperature on the
NS surface, κe = 0.2(1 + X) cm2 g−1 is the electron (Thomson)
scattering opacity, and X is the hydrogen mass fraction. The
observed Eddington luminosity is smaller for higher z:

LEdd,∞ = 4πGMc
κe

1
1 + z

. (5)

This is related to the observed Eddington flux

FEdd = LEdd,∞

4πD2
= GMc

κe D2

1
1 + z

(6)

and the Eddington temperature

TEdd,∞ =
(

gc

σSBκe

)1/4 1
1 + z

=
(

FEdd

σSB

)1/4(
R∞

D

)−1/2

, (7)

which is the effective temperature corresponding to the
Eddington flux at the NS surface corrected for the gravita-
tional redshift. We note here that the electron scattering opacity
decreases with temperature (e.g., Paczynski 1983; Pozdniakov
et al. 1983), and is reduced by about 7% at the temperature of
∼3 keV, which is typical for the upper layers of the luminous NS
atmospheres. This affects the luminosity where the Eddington
limit actually is reached.

3.2. Atmosphere Models and Color Correction

Numerous computations of X-ray bursting NS atmospheres
(London et al. 1984, 1986; Ebisuzaki 1987; Madej 1991; Pavlov
et al. 1991; Zavlin et al. 1996; Suleimanov & Poutanen 2006;
Suleimanov et al. 2011) show that their emergent spectra at high
luminosities are close to diluted blackbody spectra due to strong
energy exchange between high-energy photons and relatively
cold electrons at NS surface layers (Compton down-scattering),

FE ≈ w BE(Tc = fcTeff), (8)

where fc is the color-correction (or hardness) factor and w is the
dilution factor, which at high luminosities is very close to 1/f 4

c
(Suleimanov et al. 2011).

Spectra observed from the X-ray bursting NSs are close
to thermal, and usually they are fitted by a blackbody with
two parameters: the observed color temperature Tbb and the
normalization K = (Rbb(km)/D10)2. It is easy to find the
relations between various temperatures:

Tbb = fc T∞ = fc
Teff

1 + z
= Tc

1 + z
. (9)

The observed blackbody flux is then

F = σSBT 4
bb

R2
bb

D2
= σSBT 4

∞
R2

∞
D2

(10)

and we can find the relation between the normalization and the
NS radius:

R2
bb

D2
= R2

D2

(1 + z)2

f 4
c

= R2
∞

D2

1
f 4

c
. (11)

These formulae can be transformed into the relation between
color correction and normalization (Penninx et al. 1989; van
Paradijs et al. 1990):

K−1/4 = fcA, A = (R∞[km]/D10)−1/2. (12)

A combination of A and FEdd gives the Eddington temperature,

TEdd,∞ = 1.14×108 AF
1/4
Edd,−7 K = 9.81 AF

1/4
Edd,−7 keV, (13)

where FEdd,−7 = FEdd/10−7 erg cm−2 s−1.
A detailed comparison of the theoretical models with the data

requires the knowledge of the run of the color correction with
flux. Previous models covered the range of luminosities very
sparsely. Using our recently developed code (Suleimanov &
Poutanen 2006; Suleimanov et al. 2006; Suleimanov & Werner
2007), we have computed a very detailed set of models with the
luminosity varying by three orders of magnitude (Suleimanov
et al. 2011).

An atmosphere model is fully defined by the surface gravity
g, chemical composition, and the ratio of the luminosity to
the Eddington luminosity l = L/LEdd. The last parameter also
relates the effective temperature to the Eddington temperature
at the NS surface:

Teff = l1/4TEdd. (14)

We considered various chemical compositions (pure hydrogen,
pure helium, and a solar mixture of hydrogen and helium
with various metal abundances) and three surface gravities
log g = 14, 14.3, and 14.6. The (redshifted) radiation spectrum
from the NS atmosphere was then fitted with a diluted Planck
function in the 3–20 keV energy band (i.e., the range observed by
RXTE) to determine the color-correction factor fc (see Figure 6).
The behavior of fc at relatively high l depends mainly on the
hydrogen abundance X and very little on the surface gravity and
metal abundance.

3.3. Determining M and R Using the Touchdown Method

In an ideal situation if the observed X-ray emission indeed
comes from the passively cooling, fully visible NS and the
distance to the source is known, we can determine NS mass M
and radius R from two observables: the Eddington flux given by
Equation (6) and the NS apparent blackbody size in the cooling
tail, or quantity A = K−1/4/fc (see, e.g., Lewin et al. 1993).
The latter is related to the apparent size of the NS through the
color correction, R∞ = f 2

c Rbb, and fc is assumed to be known
in the burst tail from the theoretical considerations. Although
this method was proposed a long time ago, only recently have
strong claims appeared in the literature suggesting that it can
actually be used for determining accurate parameters of three
bursting NSs (Özel et al. 2009; Güver et al. 2010a, 2010b).

Using the approach advertised in the aforementioned papers,
one has to determine the Eddington flux from observations. For
PRE bursts it was assumed that it is reached at the “touchdown”
point (Damen et al. 1990), when the color temperature is highest
and the apparent blackbody area is lowest. The color-correction
factor fc at the late cooling phases of the PRE bursts was taken
to be close to 1.4 (Özel et al. 2009; Güver et al. 2010a, 2010b)
based on the models by Madej et al. (2004) and Majczyna et al.
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Figure 6. Color-correction factor as a function of the NS luminosity (Suleimanov
et al. 2011). The curves correspond to atmospheres of different chemical
compositions: pure hydrogen (red), pure helium (pink); the blue curves are for
models with solar H/He composition plus solar abundance of metals Z = Z!
(dotted blue) and subsolar metals Z = 0.3 Z! (solid blue). The surface gravity
is taken to be g = 1014.0 cm s−2. The dashed curve shows the results for a
hydrogen atmosphere at a larger gravity of log g = 14.3.
(A color version of this figure is available in the online journal.)

(2005; see the discussion below). The observables can then be
transferred to the constraints on M and R (see Figure 7). We will
further call this approach the “touchdown method.”

From the Eddington flux estimate we have (see dotted curves
in Figure 7)

R = 2κeD
2FEdd

c3
u−1 (1 − u)−1/2

= 14.138 km (1 + X) D2
10 FEdd,−7 u−1 (1 − u)−1/2 (15)

and the mass is found using

M

M!
= R

2.95 km
u, (16)

where the compactness u = RS/R = 1 − (1 + z)−2 and
RS = 2GM/c2 is the Schwarzschild radius of the NS. A
measurement of A gives another constraint:

R = R∞
√

1 − u = f 2
c D

√
K = D10 A−2

√
1 − u km. (17)

Combining this with the parametric expression (Equation (16))
for the mass, we get the second relation between M and R shown
by the dashed curves in Figure 7.

The Eddington temperature given by Equation (13) is inde-
pendent of the uncertain distance to the source and can be used
to express the NS radius through the observables and u:

R = c3

2κeσSBT 4
Edd,∞

u (1 − u)3/2, (18)

and the mass is then found via Equation (16). The corresponding
relation between M and R is shown by the solid curve in Figure 7.

All three curves cross in one or two points (see Figure 7) if
the quadratic equation

u(1 − u) = 2 κe D FEdd√
K f 2

c c3
= 14.138 (1 + X) D10 FEdd,−7 A2,

(19)

Figure 7. Constraints on M and R from various observed values. The solid
curve gives the relation obtained from the Eddington temperature given by
Equation (13); the thick dotted curve is for the Eddington flux given by
Equation (6); the thick dashed curve is for A = const. If the assumed distance
is too large, there are no solutions (the corresponding curves for FEdd = const
and A = const shown by thin lines do not cross).
(A color version of this figure is available in the online journal.)

which follows from Equations (15) and (17), has a real solution
for u (see, e.g., Steiner et al. 2010). This happens if u(1 − u) <
1/4 and the distance then should satisfy the following inequality:

D ! Dmax =
√

Kf 2
c c3

8 FEdd κe
= 0.177

(1 + X) A2 FEdd,−7
kpc. (20)

In the opposite case, there is no physical solution for M and R
for the given observables.

As we mentioned above, this method of determination for M
and R works in an ideal situation. There are a few problems
with this approach. First, the relation of the Eddington flux to
the touchdown flux is not clear. The reduction of the electron
scattering opacity at high temperatures increases the true Ed-
dington limit by about 7% above that given by Equations (5)
and (6). Also, if we believe that the X-ray burst luminosity is
equal to the Eddington luminosity during the expansion phase of
the PRE burst, the observed luminosity has to decrease when the
photospheric radius decreases according to Equation (5) (Lewin
et al. 1993). In reality, the observed luminosity in 4U 1724–307
increases when the photospheric radius decreases (see Figure 4).
This implies that the ratio of the luminosity to the Eddington
limit at the photosphere has to increase with decreasing photo-
spheric radius (i.e., increasing redshift z). A combination of this
dependence with the gravitational redshift effect then predicts
that the observed luminosity reaches the maximum when the
photospheric radius is larger than R, and that the maximum is
larger than expected for the Eddington luminosity at the surface.

Second, the assumption of fc ≈ 1.4 in the cooling tail
is very uncertain. This assumption is based on X-ray burst
atmosphere models from Majczyna et al. (2005), who claimed
a rather constant fc at low effective temperatures (see also
Figure 6 in Güver et al. 2010a), as well as the fact that most
of the short PRE bursts have a constant normalization at late
phases. We note here that the factors fc in Majczyna et al.
(2005) correspond to the ratio of the energy where the peak
of the model flux FE is reached to the peak energy of the
blackbody spectrum at an effective temperature. Moreover,
the low-luminosity models were calculated for high surface
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The gravity g on the NS surface is larger in comparison with the
Newtonian case due to the general relativity effects

g = GM
R2

(1 + z); (3)

therefore, the Eddington luminosity is larger, too:

LEdd = 4πGMc
κe

(1 + z) = 4πR2σSBT 4
Edd. (4)

Here TEdd is the maximum possible effective temperature on the
NS surface, κe = 0.2(1 + X) cm2 g−1 is the electron (Thomson)
scattering opacity, and X is the hydrogen mass fraction. The
observed Eddington luminosity is smaller for higher z:

LEdd,∞ = 4πGMc
κe

1
1 + z

. (5)

This is related to the observed Eddington flux

FEdd = LEdd,∞

4πD2
= GMc

κe D2

1
1 + z

(6)

and the Eddington temperature

TEdd,∞ =
(

gc

σSBκe

)1/4 1
1 + z

=
(

FEdd

σSB

)1/4(
R∞

D

)−1/2

, (7)

which is the effective temperature corresponding to the
Eddington flux at the NS surface corrected for the gravita-
tional redshift. We note here that the electron scattering opacity
decreases with temperature (e.g., Paczynski 1983; Pozdniakov
et al. 1983), and is reduced by about 7% at the temperature of
∼3 keV, which is typical for the upper layers of the luminous NS
atmospheres. This affects the luminosity where the Eddington
limit actually is reached.

3.2. Atmosphere Models and Color Correction

Numerous computations of X-ray bursting NS atmospheres
(London et al. 1984, 1986; Ebisuzaki 1987; Madej 1991; Pavlov
et al. 1991; Zavlin et al. 1996; Suleimanov & Poutanen 2006;
Suleimanov et al. 2011) show that their emergent spectra at high
luminosities are close to diluted blackbody spectra due to strong
energy exchange between high-energy photons and relatively
cold electrons at NS surface layers (Compton down-scattering),

FE ≈ w BE(Tc = fcTeff), (8)

where fc is the color-correction (or hardness) factor and w is the
dilution factor, which at high luminosities is very close to 1/f 4

c
(Suleimanov et al. 2011).

Spectra observed from the X-ray bursting NSs are close
to thermal, and usually they are fitted by a blackbody with
two parameters: the observed color temperature Tbb and the
normalization K = (Rbb(km)/D10)2. It is easy to find the
relations between various temperatures:

Tbb = fc T∞ = fc
Teff

1 + z
= Tc

1 + z
. (9)

The observed blackbody flux is then

F = σSBT 4
bb

R2
bb

D2
= σSBT 4

∞
R2

∞
D2

(10)

and we can find the relation between the normalization and the
NS radius:

R2
bb

D2
= R2

D2

(1 + z)2

f 4
c

= R2
∞

D2

1
f 4

c
. (11)

These formulae can be transformed into the relation between
color correction and normalization (Penninx et al. 1989; van
Paradijs et al. 1990):

K−1/4 = fcA, A = (R∞[km]/D10)−1/2. (12)

A combination of A and FEdd gives the Eddington temperature,

TEdd,∞ = 1.14×108 AF
1/4
Edd,−7 K = 9.81 AF

1/4
Edd,−7 keV, (13)

where FEdd,−7 = FEdd/10−7 erg cm−2 s−1.
A detailed comparison of the theoretical models with the data

requires the knowledge of the run of the color correction with
flux. Previous models covered the range of luminosities very
sparsely. Using our recently developed code (Suleimanov &
Poutanen 2006; Suleimanov et al. 2006; Suleimanov & Werner
2007), we have computed a very detailed set of models with the
luminosity varying by three orders of magnitude (Suleimanov
et al. 2011).

An atmosphere model is fully defined by the surface gravity
g, chemical composition, and the ratio of the luminosity to
the Eddington luminosity l = L/LEdd. The last parameter also
relates the effective temperature to the Eddington temperature
at the NS surface:

Teff = l1/4TEdd. (14)

We considered various chemical compositions (pure hydrogen,
pure helium, and a solar mixture of hydrogen and helium
with various metal abundances) and three surface gravities
log g = 14, 14.3, and 14.6. The (redshifted) radiation spectrum
from the NS atmosphere was then fitted with a diluted Planck
function in the 3–20 keV energy band (i.e., the range observed by
RXTE) to determine the color-correction factor fc (see Figure 6).
The behavior of fc at relatively high l depends mainly on the
hydrogen abundance X and very little on the surface gravity and
metal abundance.

3.3. Determining M and R Using the Touchdown Method

In an ideal situation if the observed X-ray emission indeed
comes from the passively cooling, fully visible NS and the
distance to the source is known, we can determine NS mass M
and radius R from two observables: the Eddington flux given by
Equation (6) and the NS apparent blackbody size in the cooling
tail, or quantity A = K−1/4/fc (see, e.g., Lewin et al. 1993).
The latter is related to the apparent size of the NS through the
color correction, R∞ = f 2

c Rbb, and fc is assumed to be known
in the burst tail from the theoretical considerations. Although
this method was proposed a long time ago, only recently have
strong claims appeared in the literature suggesting that it can
actually be used for determining accurate parameters of three
bursting NSs (Özel et al. 2009; Güver et al. 2010a, 2010b).

Using the approach advertised in the aforementioned papers,
one has to determine the Eddington flux from observations. For
PRE bursts it was assumed that it is reached at the “touchdown”
point (Damen et al. 1990), when the color temperature is highest
and the apparent blackbody area is lowest. The color-correction
factor fc at the late cooling phases of the PRE bursts was taken
to be close to 1.4 (Özel et al. 2009; Güver et al. 2010a, 2010b)
based on the models by Madej et al. (2004) and Majczyna et al.
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Figure 6. Color-correction factor as a function of the NS luminosity (Suleimanov
et al. 2011). The curves correspond to atmospheres of different chemical
compositions: pure hydrogen (red), pure helium (pink); the blue curves are for
models with solar H/He composition plus solar abundance of metals Z = Z!
(dotted blue) and subsolar metals Z = 0.3 Z! (solid blue). The surface gravity
is taken to be g = 1014.0 cm s−2. The dashed curve shows the results for a
hydrogen atmosphere at a larger gravity of log g = 14.3.
(A color version of this figure is available in the online journal.)

(2005; see the discussion below). The observables can then be
transferred to the constraints on M and R (see Figure 7). We will
further call this approach the “touchdown method.”

From the Eddington flux estimate we have (see dotted curves
in Figure 7)

R = 2κeD
2FEdd

c3
u−1 (1 − u)−1/2

= 14.138 km (1 + X) D2
10 FEdd,−7 u−1 (1 − u)−1/2 (15)

and the mass is found using

M

M!
= R

2.95 km
u, (16)

where the compactness u = RS/R = 1 − (1 + z)−2 and
RS = 2GM/c2 is the Schwarzschild radius of the NS. A
measurement of A gives another constraint:

R = R∞
√

1 − u = f 2
c D

√
K = D10 A−2

√
1 − u km. (17)

Combining this with the parametric expression (Equation (16))
for the mass, we get the second relation between M and R shown
by the dashed curves in Figure 7.

The Eddington temperature given by Equation (13) is inde-
pendent of the uncertain distance to the source and can be used
to express the NS radius through the observables and u:

R = c3

2κeσSBT 4
Edd,∞

u (1 − u)3/2, (18)

and the mass is then found via Equation (16). The corresponding
relation between M and R is shown by the solid curve in Figure 7.

All three curves cross in one or two points (see Figure 7) if
the quadratic equation

u(1 − u) = 2 κe D FEdd√
K f 2

c c3
= 14.138 (1 + X) D10 FEdd,−7 A2,

(19)

Figure 7. Constraints on M and R from various observed values. The solid
curve gives the relation obtained from the Eddington temperature given by
Equation (13); the thick dotted curve is for the Eddington flux given by
Equation (6); the thick dashed curve is for A = const. If the assumed distance
is too large, there are no solutions (the corresponding curves for FEdd = const
and A = const shown by thin lines do not cross).
(A color version of this figure is available in the online journal.)

which follows from Equations (15) and (17), has a real solution
for u (see, e.g., Steiner et al. 2010). This happens if u(1 − u) <
1/4 and the distance then should satisfy the following inequality:

D ! Dmax =
√

Kf 2
c c3

8 FEdd κe
= 0.177

(1 + X) A2 FEdd,−7
kpc. (20)

In the opposite case, there is no physical solution for M and R
for the given observables.

As we mentioned above, this method of determination for M
and R works in an ideal situation. There are a few problems
with this approach. First, the relation of the Eddington flux to
the touchdown flux is not clear. The reduction of the electron
scattering opacity at high temperatures increases the true Ed-
dington limit by about 7% above that given by Equations (5)
and (6). Also, if we believe that the X-ray burst luminosity is
equal to the Eddington luminosity during the expansion phase of
the PRE burst, the observed luminosity has to decrease when the
photospheric radius decreases according to Equation (5) (Lewin
et al. 1993). In reality, the observed luminosity in 4U 1724–307
increases when the photospheric radius decreases (see Figure 4).
This implies that the ratio of the luminosity to the Eddington
limit at the photosphere has to increase with decreasing photo-
spheric radius (i.e., increasing redshift z). A combination of this
dependence with the gravitational redshift effect then predicts
that the observed luminosity reaches the maximum when the
photospheric radius is larger than R, and that the maximum is
larger than expected for the Eddington luminosity at the surface.

Second, the assumption of fc ≈ 1.4 in the cooling tail
is very uncertain. This assumption is based on X-ray burst
atmosphere models from Majczyna et al. (2005), who claimed
a rather constant fc at low effective temperatures (see also
Figure 6 in Güver et al. 2010a), as well as the fact that most
of the short PRE bursts have a constant normalization at late
phases. We note here that the factors fc in Majczyna et al.
(2005) correspond to the ratio of the energy where the peak
of the model flux FE is reached to the peak energy of the
blackbody spectrum at an effective temperature. Moreover,
the low-luminosity models were calculated for high surface
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Suleimanov idea 

•  in order to minimize the theoretical uncertainties, the whole 
cooling track is adopt to determine the values of FEdd & A 
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gravity instead of low effective temperatures, which leads to
incorrect results (see Suleimanov et al. 2011 for details). The
color corrections obtained in this way, however, should not be
compared with the data at all because the color temperatures
of the time-resolved spectra from X-ray bursts are computed
by fitting the actual data in a specific energy interval (e.g.,
3–20 keV for RXTE/PCA) with the diluted blackbody function
with arbitrary normalization. On the other hand, the values of
fc shown in Figure 6 are produced using the procedure similar
to that applied to the data, i.e., by fitting the model spectra in
the 3–20 keV range. As was shown by Suleimanov et al. (2011)
the color correction has a flat part at l ∼ 0.2–0.5 for most
of the chemical compositions, but the actual value of fc depends
on the hydrogen fraction, e.g., for X = 1 it is closer to 1.5 than to
1.4 (see Figure 6). At lower luminosities fc can first drop because
of iron edges and then increase to rather high values. Thus,
there is no unique value for fc in the cooling tail. The expected
significant variations of fc with flux also imply that constancy of
the apparent blackbody area in the cooling tail contradicts the
burst atmosphere models. Therefore, the bursts showing such
behavior obviously demonstrate influence of some physics not
included in these simplest models of NS atmospheres, and thus
cannot be used for the determination of NS masses and radii
with the help of the aforementioned models.

Third, different PRE bursts from the same source show
different cooling tracks, e.g., the long burst and the short bursts
of 4U 1724–307 (see Figure 4) have normalizations different by
a factor of two. This makes the determination of the apparent
area from a single burst non-unique.

And finally, the most serious problem with this approach is
that only two numbers from the information obtained from the
cooling tail of the burst are used, and these quantities are not
checked to determine whether they are actually consistent with
each other. For example, the theory also predicts that the color
correction fc changes from ≈1.7 to ≈1.4 when the luminosity
drops from the Eddington to about one-third of the peak value.
This also implies that the blackbody normalization between the
touchdown point and the decay phase must increase at least
by a factor of two. It is really true for the long burst from
4U 1724–307, while the short bursts have nearly constant K,
which is two times smaller than that in the long burst, implying
probably a partial eclipse of the NS by the optically thick
accretion disk and/or the influence of the boundary layer on the
structure of the NS atmosphere (as discussed in Section 2.1). We
also note here that all bursts analyzed by Özel et al. (2009) and
Güver et al. (2010a, 2010b) are short, they do not show enough
variations of K in their cooling tracks, and, therefore, the results
obtained from these bursts are not reliable (see Section 5.2 for
more details).

On the basis of all of these arguments, we offer a new approach
to the NS mass and radius estimations using the information
from the whole cooling track.

3.4. Determining M and R Using the Cooling Tail Method

If the radiating surface area does not change during the burst
decay phase, the evolution of the normalization is fully deter-
mined by the color-correction variations (see Equations (11) and
(12)). We thus suggest fitting the observed relation K−1/4–F
at the cooling phase of the burst by the theoretical relations
fc–L/LEdd (shown in Figure 6; see also Suleimanov et al. 2011),
with free parameters being A and the Eddington flux FEdd (see
Figure 8 for illustration). The behavior of fc depends rather
weakly on the NS gravity and chemical composition, which

Figure 8. Illustration of the suggested new cooling tail method. The dependence
K−1/4–F is shown as observed during the cooling track of the long burst
from 4U 1724–307 on 1996 November 8 (circles). The theoretical fc–L/LEdd
dependence is shown by the dashed curve (right and upper axes) and the best-fit
relation (solid curve).
(A color version of this figure is available in the online journal.)

substantially reduces the model dependence of the fitting proce-
dure. Using the obtained best-fit parameters, we can then apply
a method identical to that described in Section 3.3.

The main advantages of the proposed cooling tail method
are that there is no freedom in choosing fc in the cooling tail;
the determination of the Eddington flux becomes decoupled
from the uncertainties related to the touchdown flux because
the whole cooling tail is used; and finally, one can immediately
check whether the burst spectral evolution is consistent with
theoretical models and whether the employed model includes
the majority of the relevant physics for the description of the
considered phenomenon. This check can help choose for further
analysis only those bursts that follow the theory.

4. RESULTS

4.1. The Long Burst from 4U 1724–307

4.1.1. Determining NS Parameters Using the Cooling Tail Method

Let us apply the method described in Section 3.4 for deter-
mining the NS mass and radius from the data on the long burst
from 4U 1724–307. We fit the dependence of the normaliza-
tion constant K on the observed flux F for the long burst by
the theoretical curves fc–L/LEdd computed for three chemical
compositions. They give a good description of the data at inter-
mediate fluxes to the right of the dashed vertical line, but below
the touchdown (Figure 9), and we use those data points for
fitting. Close to the touchdown, significant deviations are prob-
ably caused by deviations from the plane-parallel atmosphere
and the effects of the wind (thus, the models are not reliable).
Strong deviations are also visible at low fluxes where the burst
spectrum is probably modified by accretion. Assuming that FEdd
is actually reached at the touchdown contradicts the following
evolution of the parameters during the cooling phase. The fits
are better for the hydrogen-rich atmospheres. The results of the
fitting for all of the considered chemical compositions of the NS
atmosphere are presented in Table 1. The uncertainties in A and
FEdd are obtained with a bootstrap method.

Using the distance within the range of 5.3–7.7 kpc (see
Section 2.2), we convert a distribution of FEdd and A using Monte
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X-ray burster 4U 1724-307 

•  in the globular cluster Terzan 2 
–  solar H/He + subsolar metal abundance Z = 0.3Z⊙ (Ortolani et al. 97) 

•  Distance  
–  D = (5.3 – 7.7) ± 0.6 kpc (Kuchinski et al. 95, Ortolani et al. 97) 

•  data observed by Rossi X-ray Timing Explorer (RXTE) 
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allowed region in MR relation 

 

 

 

 

 

•  R ≧13 km for NS in 4U 1608–52, if masses are in the range of1.2–
2.4M⊙ (Poutanen et al. arXiv:1405.2663) 
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Table 1
Limits for the Radius of a 1.4 Solar Mass Neutron Star for All of the Models Considered in This Work

EOS Model Data Modifications R95%> R68%> R68%< R95%<

(km) (km) (km) (km)

Variations in the EOS model

A (2 polytropes) · · · 11.18 11.49 12.07 12.33
B (2 polytropes) · · · 11.23 11.53 12.17 12.45
C (line segments) · · · 10.63 10.88 11.45 11.83
D (hybrid w/quarks) · · · 11.44 11.69 12.27 12.54

Variations in the data interpretation

A I (high fC) 11.82 12.07 12.62 12.89
A II (low fC) 10.42 10.58 11.09 11.61
A III (redshifted photosphere) 10.74 10.93 11.46 11.72
A IV (without X7) 10.87 11.19 11.81 12.13
A V (without M13) 10.94 11.25 11.88 12.22
A VI (no PREs) 11.23 11.56 12.23 12.49
A VII (no qLMXBs) 11.17 11.96 12.47 12.81
Global limits · · · 10.42 10.58 12.62 12.89

More extreme scenarios

C (line segments) II (low fC) 9.17 9.34 9.78 10.07
A (2 polytropes) VIII (Mmax > 2.4) 12.14 12.29 12.63 12.81
E (bare quark star) · · · 10.19 10.64 11.57 12.01

Scenario motivated by Suleimanov et al. (2011)

A (2 polytropes) IX (see the text) 12.35 12.83 13.61 13.92

Note. Model A and the assumption 1.33 < fC < 1.47 for the PRE sources are assumed unless specified otherwise.
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Figure 1. Comparison of the predicted M–R relation with the observations.
The shaded regions outline the 68% and 95% confidences for the M–R relation;
these include variations in the EOS model and the modifications to the data
set (see Table 1) but not the more extreme scenarios. The lines give the 95%
confidence regions for the eight neutron stars in our data set.
(A color version of this figure is available in the online journal.)

the short PRE bursts and the qLMXBs M13 and ω Cen not
be considered because of modifications to their spectra due to
accretion (Suleimanov et al. 2011). On the other hand, Güver
et al. (2012) find that the long PRE burst of 4U 1724 does not
fit modern atmosphere models as well as short bursts from the
same source. A full resolution of this discrepancy is outside the
scope of this work and may require more observational data to
fully understand PRE bursts. Nevertheless, we have attempted
to cover the most likely scenarios.

0.2 0.4 0.6 0.8 1
-110

1

10

210

310

)-3 (fmBn
)3

P 
(M

eV
/f

m

NS 68%{NS 95% {
Heavy-Ions

Quan
tum M

C

0.05 0.1 0.15
0

1

2

3

4

EFT

)-3 (fmBn

)3
P 

(M
eV

/f
m

Figure 2. Predicted pressure as a function of baryon density of neutron star
matter as obtained from astrophysical observations. The region labeled “NS
68%” gives the 68% confidence limits and the region labeled “NS 95%” gives the
95% confidence limits. Results for neutron star matter from effective field theory
(Hebeler et al. 2010; see inset), from quantum Monte Carlo (Gandolfi et al.
2012), and from constraints inferred from heavy-ion collisions (Danielewicz
et al. 2002) are also shown for comparison.
(A color version of this figure is available in the online journal.)

While we are able to significantly constrain the P –ε relation,
determination of the composition of neutron star cores is not
yet possible. To probe the core composition, we consider EOS
model E, which describes the entire star by the high-density
quark matter EOS used in model D, i.e., a self-bound strange
quark star. In the mass range 1.4–2 solar masses, the radii are not
significantly different from our baseline model so that there is

3
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constraint on (L, K0) 
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summary 
•  neutron stars are good candidates to examine the physics under 

the extreme state. 

–  QPOs in SGRs may be good examples to adopt the asteroseismology  

•  compering the torsional oscillations to the observational evidences, 
we can get the constraint on L as L ≳ 50 MeV. 

•  superfluid effect enhances the frequencies of torsional 
oscillations. 

–  100 ≲ L ≲ 130 MeV, if all QPOs come from torsional oscillations 

–  58 ≲ L ≲ 85 MeV, if QPOs except for 26 Hz QPO coms from 
torsional oscillation 

•  we find a good parameter to describe a low-mass NS 

–  using the mass-radius constraint obtained by Suleimanov et al.,  we 
show a possibility to make a constraint on the nuclear saturation 
parameters 

–  consistent with the constraints obtained from the QPO frequencies 
observed from the giant flares in soft-gamma repeaters 
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